Open Access
Volume 38, Number 1, February 2020
Page(s) 162 - 169
Published online 12 May 2020
  1. Adiga A, Magimai M, Seelamantula C S. Gammatone wavelet Cepstral Coefficients for Robust Speech Recognition[C]//2013 IEEE International Conference of IEEE Region 10, 2013: 1–4 [Google Scholar]
  2. Ali H, Tran S N, Benetos E, et al. Speaker Recognition with Hybrid Features from a Deep Belief Network[J]. Neural Computing and Applications, 2018, 29(6): 13–19 [Article] [CrossRef] [Google Scholar]
  3. Dai W. Acoustic Scene Recognition with Deep Learning[M]. Pittsburg:Carnegie Mellon, 2016 [Google Scholar]
  4. Burgos W. Gammatone and MFCC Features in Speaker Recognition[D]. Melbourne, Florida: Florida Institute of Technology, 2014 [Google Scholar]
  5. Li J, Dai W, Metze F, et al. A Comparison of Deep Learning Methods for Environmental Sound Detection[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing, 2017: 126–130 [Google Scholar]
  6. Salamon J, Jacoby C, Bello J P. A Dataset and Taxonomy for Urban Sound Research[C]//ACM Press, 2014: 1041–1044 [Google Scholar]
  7. Chachada S, Kuo C-C J. Environmental Sound Recognition:a Survey[J]. APSIPA Transactions on Signal and Information Processing, 2014(3):e14 [Article] [CrossRef] [Google Scholar]
  8. Agrawal D M, Sailor H B, Soni M H, et al. Novel TEO-Based Gammatone Features for Environmental Sound Classification[C]//2017 25th European Signal Processing Conference, Kos, Greece, 2017: 1809–1813 [Google Scholar]
  9. Nair V, Hinton G E. Rectified Linear Units Improve Restricted Boltzmann Machines[C]//Proceedings of the 27th International Conference on Machine Learning, 2010: 807–814 [Google Scholar]
  10. Boureau Y L, Ponce J, Lecun Y. A Theoretical Analysis of Feature Pooling in Visual Recognition[C]//Proceedings of the 27th International Conference on Machine Learning, 2010: 111–118 [Google Scholar]
  11. Piczak K J. Environmental Sound Classification with Convolutional Neural Networks[C]//2015 IEEE 25th International Workshop on Machine Learning for Signal Processing, 2015: 1–6 [Google Scholar]
  12. Zhang X, Zou Y, Shi W. Dilated Convolution Neural Network with Leaky ReLU for Environmental Sound Classification[C]//22nd International Conference on Digital Signal Processing, 2017: 1–5 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.