Open Access
Issue
JNWPU
Volume 38, Number 1, February 2020
Page(s) 199 - 208
DOI https://doi.org/10.1051/jnwpu/20203810199
Published online 12 May 2020
  1. Ratner A S, Kelly P. Anomalies in Network Traffic[C]//2013 IEEE International Conference on Intelligence and Security Informatics, 2013: 206–208 [Google Scholar]
  2. Camacho J, Macia-Fernandez G, Diaz-Verdejo J, et al. Tackling the Big Data 4 Vs for Anomaly Detection[C]//IEEE Conference on Computer Communications Workshops, Toronto, 2014: 500–505 [Google Scholar]
  3. Xu W, Huang L, Fox A, Patterson D A, et al. Detecting Large-Scale System Problems by Mining Console Logs[C]//The 27th International Conference on Machine Learning, Haifa, 2010: 37–46 [Google Scholar]
  4. Yen T F, Oprea A, Onarlioglu K, et al. Beehive: Large-Scale Log Analysis for Detecting Suspicious Activity in Enterprise Networks[C]//The 29th Annual Computer Security Applications Conference, New York, 2013: 199–208 [Google Scholar]
  5. Therdphapiyanak J, Piromsopa K. Applying Hadoop for Log Analysis toward Distributed IDS[C]//The 7th International Conference on Ubiquitous Information Management and Communication, New York, 2013: 1–3 [Google Scholar]
  6. Bamakan S M H, Wang H, Yingjie T, et al. An Effective Intrusion Detection Framework Based on MCLP/SVM Optimized by Time-Varying Chaos Particle Swarm Optimization[J]. Neurocomputing, 2016, 199:90–102 [Article] [CrossRef] [Google Scholar]
  7. Ambusaidi M A, He X, Nanda P, et al. Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm[J]. IEEE Trans on Computers, 2016, 65(10): 2986–2998 [Article] [CrossRef] [Google Scholar]
  8. Lippmann R P, Fried D J, Graf I, et al. Evaluating Intrusion Detection Systems: the 1998 Darpa Off-Line Intrusion Detection Evaluation[J]. Discex, 2000, 2(1): 1012–1026 [Article] [Google Scholar]
  9. Rodda S, Erothi U S R. Class Imbalance Problem in the Network Intrusion Detection Systems[C]//2016 International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, 2016: 2685–2688 [Google Scholar]
  10. Gupta G P, Kulariya M. A Framework for Fast and Efficient Cyber Security Network Intrusion Detection Using Apache Spark[J]. Procedia Computer Science, 2016, 93(1): 824–831 [Article] [CrossRef] [Google Scholar]
  11. Deshmukh D H, Ghorpade T, Padiya P. Intrusion Detection System by Improved Preprocessing Methods and Naive Bayes Classifier Using Nsl-Kdd 99 Dataset[C]//2014 International Conference on Electronics and Communication Systems, Coimbatore, 2014: 1–7 [Google Scholar]
  12. Pajouh H H, Dastghaibyfard G, Hashemi S. Two-Tier Network Anomaly Detection Model: a Machine Learning Approach[J]. Journal of Intelligent Information Systems, 2015, 48(1):1–14 [Article] [Google Scholar]
  13. Deshmukh D H, Ghorpade T, Padiya P. Improving Classification Using Preprocessing and Machine Learning Algorithms on Nsl-Kdd Dataset[C]//2015 International Conference on Communication, Information Computing Technology, Mumbai, 2015: 1–6 [Google Scholar]
  14. Pervez M S, Farid D M. Feature Selection and Intrusion Classification in Nsl-Kdd Cup 99 Dataset Employing SVMS[C]//in the 8th International Conference on Software, Knowledge, Information Management and Applications, Dhaka, 2014: 1–6 [Google Scholar]
  15. Gao Ni, Gao Ling, He Yiyue, et al. A Lightweight Intrusion Detection Model Based on Autoencoder Network with Feature Reduction[J]. Acta Electronica Sinica, 2017, 45(3): 730–739 [Article] (in Chinese) [Google Scholar]
  16. Dela HOZ E, Ortiz A, Ortega J, et al. Network Anomaly Classification by Support Vector Classifiers Ensemble and Non-Linear Projection Techniques[J]. Hybrid Artificial Intelligent Systems, 2013, 8073(1): 103–111 [Article] [CrossRef] [Google Scholar]
  17. Shahbaz M B, Wang X, Behnad A, et al. On Efficiency Enhancement of the Correlation-Based Feature Selection for Intrusion Detection Systems[C]//2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, 2016: 1–7 [Google Scholar]
  18. Aghdam M H, Kabiri P. Feature Selection for Intrusion Detection System Using Ant Colony Optimization[J]. Internaltiral Jeurnal of Network Security, 2016, 18(3): 420–432 [Article] [Google Scholar]
  19. Ingre B, Yadav A. Performance Analysis of Nsl-Kdd Dataset Using Ann[C]//2015 International Conference on Signal Processing and Communication Engineering Systems, Guntur, 2015: 92–96 [Google Scholar]
  20. Potluri S, Diedrich C. Accelerated Deep Neural Networks for Enhanced Intrusion Detection System[C]//2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation, Berlin, 2016: 1–8 [Google Scholar]
  21. Subba B, Biswas S, Karmakar S. A neural Network Based System for Intrusion Detection and Attack Classification[C]//2016 Twenty Second National Conference on Communication, Guwahati, 2016: 1–6 [Google Scholar]
  22. Lai YingXu, Liu Zenghui, Cai Xiaotian, et al. Research on Intrusion Detection of Industrial Control System[J]. Journal on Communications, 2017, 38(2): 143–156 [Article] (in Chinese) [Google Scholar]
  23. Jin Zhongfeng, Li Nan, Liu Chao, et al. Review of Research on Intrusion Detection Technology of Industrial Control System[J]. Secrecy Science and Technology, 2018(3):18–25 [Article] (in Chinese) [Google Scholar]
  24. Blanco R, Cilla J J, Malagon P, et al. Tuning Cnn Input Layout for Ids with Genetic Algorithms[C]//Hybrid Articial Intelligent Systems, Cham, 2018: 197–209 [Google Scholar]
  25. Lecun Y, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324 [Article] [CrossRef] [Google Scholar]
  26. Decleraq D, Amaricai A, Savin V, et al.Check Node Unit for Ldpc Decoders Based on One-Hot Data Representation of Messages[J]. Electronics Letters, 2015, 51(12): 907–908 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  27. Tavallaee M, Bagheri E, Lu W, et al. A Detailed Analysis of the Kdd Cup 99 Data Set[C]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, 2009: 1–6 [Google Scholar]
  28. Lemay A, Fernandez J M. Providing SCADA Network Data Sets for Intrusion Detection Research[C]//in The 9th Workshop on Cyber Security Experimentation and Test, Austin, TX, 2016 [Article] [Google Scholar]
  29. Marsden T. Probability Risk Identification Based Intrusion Detection System for SCADA Systems[C]//International Conference on Mobile Networks & Management, Cham, 2017 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.