Open Access
Issue
JNWPU
Volume 38, Number 2, April 2020
Page(s) 261 - 270
DOI https://doi.org/10.1051/jnwpu/20203820261
Published online 17 July 2020
  1. Lin Hongzhen, Wang Huoguang, Jiang Zhangyan. High Performance Aeroengine Heat Transfer Technology[M]. Beijing: National Defense Industry Press, 2005 [Google Scholar]
  2. Yin Zhao, Fang Xiangjun, Liu Siyong, et al. Conjugate Heat Transfer Analysis of Transonic Internally Cooled Turbine Blades[J]. Proceedings of the CSEE, 2013, 33 (14): 114– 120 [Article] [NASA ADS] [Google Scholar]
  3. Yoshiara T, Sasaki D, Nakahashi K. Conjugate Heat Transfer Simulation of Cooled Turbine Blades Using Unstructured-Mesh CFD Solver[R]. AIAA-2011-0498 [Google Scholar]
  4. Bohn D, Heuer T. Conjugate Flow And Heat Transfer Calculation of a High-Pressure Turbine Nozzle Guide Vane[R]. AIAA-2001-3304 [Google Scholar]
  5. Gupta J A. Application of Conjugate Heat Transfer(CHT) Methodology for Computation of Heat Transfer on a Turbine Blade[D]. Columbus: The Ohio State University, 2009 [Google Scholar]
  6. Bohn D, Ren J. Cooling Performance of the Steam-Cooled Vane in a Steam Turbine Cascade[R]. ASME-GT2005-68148 [Google Scholar]
  7. Kusterer K, Hagedorn T, Bohn D, et al. Improvement of a Film-Cooled Blade by Application of the Conjugate Calculation Technique[J]. Journal of Turbomachinery, 2006, 128 (3): 572– 578 [Article] [CrossRef] [Google Scholar]
  8. Rigby D L, Lepicovsky J. Conjugate Heat Transfer Analysis of Internally Cooled Configurations[R]. ASME-GT2001-0405 [Google Scholar]
  9. Croce G A. Conjugate Heat Transfer Procedure for Gas Turbine Blades[J]. Annals of New York Academy of Sciences, 2001, 934: 273– 280 [Article] [Google Scholar]
  10. Feng Guotai, Huang Jiaye, Li Haibin, et al. Mathematical Model of Three-Dimensional Multi-Field Coupled in Gas Turbine Engine[J]. Journal of University of Shanghai for Science and Technology, 2001, 23 (3): 189– 192 [Article] [Google Scholar]
  11. Yuting J, Qun Z, Ping D, et al. Numerical Simulation on Turbine Blade LeadingvEdge High-Efficiency Film Cooling by the Application of Water Mist[J]. Numerical Heat Transfer Part A, Applications, 2014, 66 (12): 1341– 1364 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. Insinna M, Griffini D, Salvadori S, et al. Film Cooling Performance in a Transonic High-Pressure Vane:Decoupled Simulation and Conjugate Heat Transfer Analysis[J]. Energy Procedia, 2014, 45: 1126– 1135 [Article] [CrossRef] [Google Scholar]
  13. Ho K S, Liu J, Urwiller C, et al. Conjugate Heat Transfer Analysis of a Cooled Turbine Blade Using Frozen Rotor Approach[R]. ASME-GT2015-43699 [Google Scholar]
  14. Tucker P G. Computation of Unsteady Turbomachinery Flows:Part 1-Progress and Challenges[J]. Progress in Aerospace Sciences, 2011, 47 (7): 522– 545 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. Funazaki K I, Tetsuka N, Tanuma T. Effects of Periodic Wake Passing upon Aerodynamic Loss of a Turbine Cascade Part Ⅰ: Measurements of Wake-Affected Cascade Loss by Use of a Pnuemetic Probe[R]. ASME-GT1999-093 [Google Scholar]
  16. Ardey S, Fottner L. Flow Field Measurements on a Large-Scale Turbine Cascade with Leading Edge Film Cooling by Two Rows of Holes[R]. ASME-GT1997-524 [Google Scholar]
  17. Zhou Li, Zhang Xin, Cai Yuanhu. Effect of Unsteady Wake Width on the Film-Cooling Effectiveness for a Gas Turbine Blade[J]. Proceedings of the CSEE, 2012, 31(29): 97–102(in Chinese) [Google Scholar]
  18. Li Hongyang, Zheng Yun. Effect of Rotor-Stator Interaction on Film-Cooling of Turbine Blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (1): 139– 146 [Article] [NASA ADS] [Google Scholar]
  19. Li Hongyang, Zheng Yun. Effect of Wake on Boundary Layer Transition of Turbine Cascade[J]. Journal of Propulsion Technology, 2017, 38 (3): 532– 538 [Article] [Google Scholar]
  20. Zheng Yun, Li Hongyang, Liu Daxiang. Application and Analysis of γ-Reθ Transition Model in Hypersonic Flow[J]. Journal of Propulsion Technology, 2014, 35 (3): 296– 304 [Article] [Google Scholar]
  21. Li Hongyang, Zheng Yun. Effect of Surface Roughness on Conjugate Heat Transfer of a Turbine Vane[R]. ASME-GT2016-56744 [Google Scholar]
  22. Cao Yuzhang. Heat Transfer[M]. Beijing: Beihang University Press, 2001, 40– 44 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.