Open Access
Volume 38, Number 2, April 2020
Page(s) 271 - 278
Published online 17 July 2020
  1. Ang Haisong. General Layout Design Analysis of Large Aircraft[J]. Aeronautical Manufacturing Technology, 2009, (2): 38– 43 [Article] [Google Scholar]
  2. Kim H J, Sasaki D, Obayashi S. et al. Aerodynamic Optimization of Supersonic Transport Wing Using Unstructured Adjoint Method[J]. AIAA Journal, 2001, 56: 1011– 1020 [Article] [CrossRef] [Google Scholar]
  3. Reuther J, Alonso J J, Rimlinger M J, et al. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Distributed Memory Parallel Computers[J]. Computers & Fluids, 1999, 28 (4): 675– 700 [Article] [CrossRef] [Google Scholar]
  4. National Research Council. High Speed Research Aeronautics and Space Engineering Board U.S. Supersonic Commercial Aircraft: Assessing NASA's High Speed Research Program[M]. Washington, D C, National Academy Press, 1997 [Google Scholar]
  5. Feng Xiaoqiang, Song Bifeng, Li Zhanke, et al. Hybrid Optimization Approach Reaseach for Low Sonic Boom Supersonic Aircraft Configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34 (8): 1768– 1777 [Article] [Google Scholar]
  6. Sakata K. Supersonic Experimental Airplane(NEXST) for Next Generation SST Technology[R]. AIAA-2002-0527 [Google Scholar]
  7. John Morgenstern, Nicole Norstrud, Marc Stelmack. Final Report for The Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period[R]. NASA/CR-2010-216796 [Google Scholar]
  8. Feng X Q. The Research of Low Sonic Boom Mechanism and Design Method of Supersonic Aircraft[D]. Xi'an: Northwestern Polytechnical University, 2014: 15(in Chinese) [Google Scholar]
  9. Li Li, Bai Junqiang, Guo Tongbiao, Aerodynamic Optimization Design of the Supersonic Aircraft Based on Discrete Adjoint Method[J]. Journal of Northwestern Polytechnical University, 2017, 36 (12): 3785– 3797 [Google Scholar]
  10. Martins J R, Lambe A B, Multidisciplinary Design Optimization:a Survey of Architectures[J]. AIAA Journal, 2013, 51 (9): 2049– 2075 [Article] [Google Scholar]
  11. Chen Song. Gradient Based Aerodynamic Shape Optimization Design and Application[D]. Xi'an: Northwestern Polytechnical University, 2016(in Chinese) [Google Scholar]
  12. Thomas C L. Extrapolation of Sonic Boom Pressure Signatures by the Waveform Parameter Method[R]. NASA TND-6832, 1972 [Google Scholar]
  13. Rallabhandi S, Loubeau A. Summary of Propagation Cases of the Second AIAA Sonic Boom Prediction Workshop[R]. AIAA-2017-3257 [Google Scholar]
  14. Park M A, Nemec M. Near Field Summary and Statistical Ananalysis of the Second AIAA Sonic Boom Prediction Workshop[R]. AIAA-2017-3256 [Google Scholar]
  15. Luke E, Collins E, Blades E. A Fast Mesh Deformation Method Using Explicit Interpolation[J]. Journal of Computational Physics, 2012, 231 (2): 586– 601 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer, 1999: 526– 572 [CrossRef] [Google Scholar]
  17. Nadarajah S, Jameson A. A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization[J]. AIAA Paper, 2000, 667: 2000– [Article] [Google Scholar]
  18. Chambers J. Innovation in Flight Research at the NASA Langley Research Center on Revolutionary Advanced Concept for Aeronautics[R]. NACA SP-2005-4539 [Google Scholar]
  19. Andrea Minelli. Aero-Acoustic Shape Optimization of a Supersonic Business Jet. Analysis of PDEs[D]. Nice, France: Université Nice Sophia Antipolis, 2013 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.