Open Access
Issue
JNWPU
Volume 38, Number 2, April 2020
Page(s) 295 - 302
DOI https://doi.org/10.1051/jnwpu/20203820295
Published online 17 July 2020
  1. Gu J, Su T, Wang Q, et al. Multiple Moving Targets Surveillance Based on a Cooperative Network for Multi-UAV[J]. IEEE Communications Magazine, 2018, 56 (4): 82– 89 [Article] [CrossRef] [Google Scholar]
  2. Erhart S, Hirche S. Internal Force Analysis and Load Distribution for Cooperative Multi-Robot Manipulation[J]. IEEE Trans on Robotics, 2015, 31 (5): 1238– 1243 [Article] [CrossRef] [Google Scholar]
  3. Cheng H, Page J, Olsen J. Cooperative Control of UAV Swarm via Information Measures[J]. International Journal of Intelligent Unmanned Systems, 2013, 1 (3): 256– 275 [Article] [CrossRef] [Google Scholar]
  4. Tong Q, Yuan Z, Liao X, et al. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception[J]. IEEE Trans on Visualization and Computer Graphics, 2017, 24 (12): 3123– 3136 [Article] [CrossRef] [Google Scholar]
  5. Ou L, Shao Q, Chen J, et al. Decentralized PID Controller Design for the Cooperative Control of Networked Multi-Agent Systems[C]//2012 12th International Conference on Control Automation Robotics & Vision, 2012: 554–559 [Google Scholar]
  6. Zhou Y, Cheng N, Lu N, et al. Multi-UAV-Aided Networks:Aerial-Ground Cooperative Vehicular Networking Architecture[J]. IEEE Vehicular Technology Magazine, 2015, 10 (4): 36– 44 [Article] [CrossRef] [Google Scholar]
  7. Heredia G, Caballero F, Maza I, et al. Multi-UAV Cooperative Fault Detection Employing Vision-Based Relative Position Estimation[J]. IFAC Proceedings Volumes, 2008, 41 (2): 12093– 12098 [Article] [CrossRef] [Google Scholar]
  8. Bi Peng, Luo Jianjun, Zhang Bo. Cooperate Control Algorithm for Spacecraft Formation Flying Based on Consensus Theory[J]. Journal of Astronautics, 2010, 31 (1): 70– 74 [Article] [Google Scholar]
  9. Zhou Jian, Gong Chunlin, Su Hua, et al. Finite Time Distributed Synchronization of Spacecraft Formation Attitude with Complex Constraints[J]. Journal of Astronautics, 2018, 39 (12): 1340– 1347 [Article] [Google Scholar]
  10. Zhang Bo, Luo Jianjun, Yuan Jianping. On-Orbit Autonomous Operation Cooperative Control of Multi-Spacecraft Formation[J]. Journal of Astronautics, 2010, 31 (1): 130– 136 [Article] [Google Scholar]
  11. Luo Jianjun, Zhou Liang, Jiang Qiqi, et al. 6 DOF Coordinated Control Using Cyclic Pursuit for Spacecraft Formation[J]. Journal of Astronautics, 2017, 38 (2): 166– 175 [Article] [Google Scholar]
  12. Lawrence D A, Frew E W, Pisano W J. Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control[J]. Journal of Guidance Control & Dynamics, 2012, 31 (31): 1220– 1229 [Article] [CrossRef] [Google Scholar]
  13. Wang Y, Wang X, Zhao S, et al. Vector Field Based Sliding Mode Control of Curved Path Following for Miniature Unmanned Aerial Vehicles in Winds[J]. Journal of Systems Science & Complexity, 2018, 31 (1): 302– 324 [Article] [CrossRef] [Google Scholar]
  14. Park D C, Elsharkawi M A, Marks R J I, et al. Electric Load Forecasting Using an Artificial Neural Network[J]. IEEE Trans on Power Systems, 1991, 6 (2): 442– 449 [Article] [CrossRef] [Google Scholar]
  15. Das D, Matolak D W, Das S. Spectrum Occupancy Prediction Based on Functional Link Artificial Neural Network(FLANN) in ISM Band[J]. Neural Computing & Applications, 2018, 29 (12): 1363– 1376 [Article] [CrossRef] [Google Scholar]
  16. Luo Y, Fu Q, Liu J, et al. An Extended Algorithm Using Adaptation of Momentum and Learning Rate for Spiking Neurons Emitting Multiple Spikes[C]//International Work-Conference on Artificial Neural Networks, 2017: 569–579 [Google Scholar]
  17. Bengio Y, Mesnard T, Fischer A, et al. STDP-Compatible Approximation of Backpropagation in an Energy-Based Model[J]. Neural Computation, 2017, 29 (3): 555– 577 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.