Open Access
Volume 38, Number 3, June 2020
Page(s) 649 - 656
Published online 06 August 2020
  1. Abramowich G N. The Theory of Turbulent Jets[M]. Cambridge, MA: MIT Press, 1963 [Google Scholar]
  2. Sabin C M. An Analytical and Experimental Study of the Plane, Incompressible, Turbulent Free-Shear Layer with Arbitrary Velocity Ratio and Pressure Gradient[J]. Journal of Fluids Engineering, 1965, 87 (2): 421– 428 [Google Scholar]
  3. Dimotakis P E. Two-Dimensional Shear-Layer Entrainment[J]. AIAA Journal, 1986, 24 (11): 1791– 1796 [Article] [CrossRef] [Google Scholar]
  4. Zhao Yuxin. Experimental Investigation of Spatiotemporal Structures of Supersonic Mixing Layer[D]. Changsha: National University of Defense Technology, 2008(in Chinese) [Google Scholar]
  5. Konrad J H. An Experimental Investigation of Mixing in Two-dimensional Turbulent Shear Flows with Applications to Diffusion-limited Chemical Reactions[D]. Pasadena, California: California Institute of Technology, 1977 [Google Scholar]
  6. Bogdanoff D W. Compressibility Effects in Turbulent Shear Layers[J]. AIAA Journal, 1983, 21 (6): 926– 927 [Article] [CrossRef] [Google Scholar]
  7. Papamoschou D, Roshko A. The Compressible Turbulent Shear Layer an Experimental Study[J]. Journal of Fluid Mechanics, 1988, 197 (1): 453 [Article] [CrossRef] [Google Scholar]
  8. Dimotakis P E. On the Convection Velocity of Turbulent Structures in Supersonic Shear Layer[C]//AIAA 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1991 [Google Scholar]
  9. Brown G L, Roshko A. On Density Effects and Large Structure in Turbulent Mixing Layers[J]. Journal of Fluid Mechanics, 1974, 64: 775– 816 [Article] [CrossRef] [Google Scholar]
  10. Hall J L. An Experimental Investigation of Structure, Mixing and Combustion in Compressible Turbulent Shear Layers[D]. Pasadena, California: California Institute of Technology, 1991 [Google Scholar]
  11. Zhang C X, Liu Y, Fu B S, et al. Direct Numerical Simulation of Subsonic-Supersonic Mixing Layer[J]. Acta Astronautica, 2018, 153: 50– 59 [Article] [CrossRef] [Google Scholar]
  12. Ping Jun. Theory and Application of Jet[M]. Beijing: Astronautics Press, 1995 (in Chinese) [Google Scholar]
  13. Smits A J, Dussauge J P. Turbulent Shear Layers in Supersonic Flow[M]. Liu Hong, Zhang Bin, Translator. Beijing: Aviation industry press, 2016(in Chinese) [Google Scholar]
  14. Zhang Fuxiang. Dynamics of Rocket Jet[M]. Harbin: Harbin Engineering University Press, 2004 (in Chinese) [Google Scholar]
  15. Xu Jinglei. The Development of the PIV Experimental study of the Super/Hypersonic Flow Field[J]. Advance in Mechanics, 2012, 42 (1): 85– 94 [Article](in Chinese) [Google Scholar]
  16. Rong Zhen. Research on the PIV Technique and Application in Supersonic Flow[D]. Shanghai: Shanghai Jiaotong University, 2012(in Chinese) [Google Scholar]
  17. Goyne C P, Mcdaniel J C, Krauss R H, et al. Velocity Measurement in a Dual-Mode Supersonic Combustor Using Particle Image Velocimetry[R]. AIAA-2001-1761 [Google Scholar]
  18. Humphreys W M, Bartram S M, Blackshire J L. A Survey of Particle Image Velocimetry Applications in Langley Aerospace Facilities[R]. AIAA-1993-0411 [Google Scholar]
  19. Haertig J, Havermann M, Rey C, et al. Particle Image Velocimetry in Mach 3.5 and 4.5 Shock-Tunnel Flows[J]. AIAA Journal, 2002, 40 (6): 1056– 1060 [Article] [CrossRef] [Google Scholar]
  20. He Lin. Experimental Investigation of Supersonic Boundary Layer and Shock Wave/Boundary Layer Interaction[D]. Changsha: National University of Defense Technology, 2011(in Chinese) [Google Scholar]
  21. Chen Maozhang. Fundamentals of Viscous Fluid Dynamics[M]. Beijing: Higher Education Press, 2002 (in Chinese) [Google Scholar]
  22. Goebel S G, Dutton J C. Experimental study of Compressible Turbulent Mixing Layers[J]. AIAA Journal, 1991, 29 (4): 538– 546 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.