Open Access
Volume 38, Number 3, June 2020
Page(s) 657 - 667
Published online 06 August 2020
  1. Klafin J. Tactical Flight Management System Design[C]//Aircraft Design, Systems and Technology Meeting, 1983 [Google Scholar]
  2. Cochran K G. Artificial Intelligence Techniques Applied to Vehicle Management System Diagnostics[C]//Digital Avionics Systems Conference, 1991 [Google Scholar]
  3. Advisory Group for Aerospace Research & Development. Integrated Vehicle Management Systems[R]. AGARD Advisory Report 343, 1996 [Google Scholar]
  4. Wu Wenhai. Integrated Flight Conrtrol System[M]. Beijing: Aviation Industry Presse, 2007: 195– 197 (in Chinese) [Google Scholar]
  5. Collinson R P G. Introduction to Avionics System[M]. Wu Wenhai, Cheng Chuanjin, Translator. Beijing: Aviation Industry Press, 2009: 284–292(in Chinese) [Google Scholar]
  6. Shen Gongzhang, Gao Jinyuan, Zhang Jin. Aircraft Integrated Control and Flight Management[M]. Beijing: Beihang University Press, 2008: 250– 255 (in Chinese) [Google Scholar]
  7. Zhang Ximin, Xu Ao. On Integrated Vehicle Management System of Advanced Fighters[J]. Electronics Optics & Control 2011, 18 (11): 1– 6 [Article](in Chinese) [Google Scholar]
  8. Luo Qiaoyun. Review on the Operational Application of the Fifth Generation Fighter in Future Air Combat[J]. National Defense Science & Technology, 2017 (4): 57– 62 [Article](in Chinese) [Google Scholar]
  9. Paris D E, Trevino L. Integrated Intelligent Vehicle Management Framework[C]//2008 IEEE Aerospace Conference, Big Sky, MT, 2008: 1–7 [Google Scholar]
  10. Blakelock J H. Design and Analysis of a Digitally Controlled Integrated Flight/Fire Control System[J]. Journal of Guidance Control & Dynamics, 1983, 6 (4): 251– 257 [Article] [CrossRef] [Google Scholar]
  11. Pahle J W, Powers B, Regenie V, et al. Research Flight-Control System Development for the F-18 High Alpha Research Vehicle[R]. NASA-1991-0012818 [Google Scholar]
  12. Canter D E, Groves A W. X-31 Post-Stall Envelope Expansion and Tactical Utility Testing[C]//AIAA 7th Biennial Flight Test Conference, 1994: 122–133 [Google Scholar]
  13. Knox C E, Meyer D W. Integrated Flight/Fire/Propulsion Controls[C]//AIAA, AHS, ASEE Aircraft Design Systems and Operations Meeting, 1984: 1–5 [Google Scholar]
  14. Comegys G L. Tactical Flight Management-an Overview[C]//Aerospace Congress & Exposition, 1984: 1–8 [Google Scholar]
  15. Wang G, Gu Q. Research on Distributed Integrated Modular Avionics System Architecture Design and Implementation[C]//IEEE/AIAA 32nd Digital Avionics Systems Conference, East Syracuse, NY, 2013: 7D6-1-7D6-10 [Google Scholar]
  16. Kim N H, Choi J H, Dawn A. Prognostics and Health Management of Engineering Systems[M]. Cham, Switzerland: Springer International Publishing, 2017: 2– 4 [Google Scholar]
  17. Zhang Baozhen, Wang Ping, You Chenyu. Overview of Oversea Prognostics and Health Management Technologies Development Projects[J]. Computer Measurement & Control, 2016, 24 (6): 1– 7 [Article](in Chinese) [Google Scholar]
  18. Santamaria E, Royo P, Barrado C, et al. An Integrated Mission Management System for UAS Civil Applications[C]//AIAA Guidance, Navigation, & Control Conference, 2009 [Google Scholar]
  19. Gao L, Wu W, Jia L. Design Methodology of Vehicle Management System for Unmanned Combat Aerial Vehicle[C]//Asia-Pacific International Symposium on Aerospace Technology, 2010 [Google Scholar]
  20. Talley D, Mavris D. An Adaptive Environment for the Identification of Morphing UCAV Mission Requirements[C]//AIAA Aerospace Sciences Meeting & Exhibit, 2013 [Google Scholar]
  21. Gunetti P, Dodd T, Thompson H. Simulation of a Soar-Based Autonomous Mission Management System for Unmanned Aircraft[J]. Journal of Aerospace Computing Information & Communication, 2013, 10 (2): 53– 70 [Article] [Google Scholar]
  22. Feng Z, Lu H, Jiang W. A Reconfigurable Mission Management System Based on Modular Framework for Micro UAVs[C]//Guidance, Navigation & Control Conference, 2015 [Google Scholar]
  23. Theissing N, Schulte A. Intent-Based UAV Mission Management Using an Adaptive Mixed-Initiative Operator Assistant System[C]//AIAA Infotech@Aerospace Conference, 2013 [Google Scholar]
  24. Royo P, Barrado C, Salami E, et al. Towards the Automation of the UAS Mission Management[C]//Digital Avionics Systems Conference, 2013 [Google Scholar]
  25. Luo Chang, Wang Jie, Wang Pengfei, et al. Research on Intelligence and Autonomous Attack of Unmanned Combat Aerial Vehicle[J]. Aerodynamic Missile Journal, 2015 (8): 18– 24 [Article](in Chinese) [Google Scholar]
  26. Wang Guoqing, Gu Qingfan, Wang Miao, et al. Research on the Architecture Technology for New Generation Integrated Avionics System[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (6): 1473– 1486 [Article](in Chinese) [Google Scholar]
  27. Wang G Q, Gu Q F. Research on Distributed Integrated Modular Avionics System Architecture Design and Implementation[C]//Digital Avionics Systems Conference, 2014 [Google Scholar]
  28. Wang H, Niu W. A Review on Key Technologies of the Distributed Integrated Modular Avionics System[J]. International Journal of Wireless Information Networks, 2018, 25 (3): 358– 369 [Article] [CrossRef] [Google Scholar]
  29. Wang Y S, Savage S, Lei H. The Architecture of Airborne Datalink System in Distributed Integrated Modular Avionics[C]//2016 Integrated Communications Navigation and Surveillance, 2016 [Google Scholar]
  30. Gu Q, Wang G, Wu J, et al. Dynamic Reconfiguration Mechanism for Distributed Integrated Modular Avionics System[C]//AIAA Aviation Technology, Integration, & Operations Conference, 2015 [Google Scholar]
  31. Hayre A, Dull T, Meyn F. The ATF YF-23 Vehicle Management System[J]. Applied Mechanics & Materials, 2013, 368/369/370: 441– 444 [Article] [Google Scholar]
  32. Moir I, Seabridge A G. Management of Utility Systemin the Experimental Aircraft Programmer[J]. Aerospace, 1986 (9): 28– 34 [Google Scholar]
  33. Burkhard A, Deitrich R. Joint Strike Fighter Integrated Subsystems Technology, a Demonstration for Industry, by Industry[J]. Journal of Aircraft, 2015, 40 (5): 906– 913 [Article] [CrossRef] [Google Scholar]
  34. Liu Wei. Application Analysis of Commercial Off-the-Shelf Software in the Field of American Defense[J]. Computer CD Software and Applications, 2014 (4): 73– 75 [Article](in Chinese) [Google Scholar]
  35. Gunetti P, Dodd T, Thompson H. A Software Architecture for Autonomous UAV Mission Management and Control[C]//AIAA Infotech@Aerospace Conference, 2013 [Google Scholar]
  36. Chu Wenkui, Zhang Fengming, Fan Xiaoguang. Overview on Software Architecture of Integrated Modular Avionic Systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30 (10): 1912– 1917 [Article](in Chinese) [Google Scholar]
  37. Wang Y, Wang J Y, Wang L. A Transformation-Based Integrated Modular Avionics Software Model Construction Approach[J]. Applied Mechanics & Materials, 2014, 668/669: 343– 346 [Article] [Google Scholar]
  38. Wang G. Integration Technology for Avionics System[C]//Digital Avionics Systems Conference, 2012 [Google Scholar]
  39. Nguyen T, Lim C P, Duy Nguyen N, et al. A Review of Situation Awareness Assessment Approaches in Aviation Environments[J]. IEEE Systems Journal, 2019, 13 (3): 3590– 3603 [Article] [Google Scholar]
  40. Dalinger I, Smurov M, Sukhikh N, et al. Pilot's Situational Awareness and Methods of its Assessment[J]. Indian Journal of Science and Technology, 2016, 9 (46): 1– 5 [Article] [Google Scholar]
  41. Siyu Z, Wenhai W, Shengming Z, et al. A New Situation Assessment Model for Modern Within-Visual-Range Air Combat[J]. Procedia Engineering, 2012, 29: 339– 343 [Article] [Google Scholar]
  42. Zhu Feng, Hu Xiaofeng. Review and Research Prospect of Battlefield Situation Assessment Based on Deep Learning[J]. Military Operations Research and Systems Engineering, 2016, 30 (3): 22– 27 [Article](in Chinese) [Google Scholar]
  43. Koopmanschap R, Hoogendoorn M, Roessingh J J. Tailoring a Cognitive Model for Situation Awareness Using Machine Learning[J]. Applied Intelligence, 2015, 42 (1): 36– 48 [Article] [Google Scholar]
  44. Schneider V, Mumm N C, Holzapfel F. Trajectory Generation for an Integrated Mission Management System[C]//IEEE International Conference on Aerospace Electronics & Remote Sensing Technology, 2016 [Google Scholar]
  45. Ji W F, Xu H F, Wang G Y, et al. Path Planning under Dynamic Threat Environment[J]. Applied Mechanics and Materials, 2014, 543/544/545/546/547: 1790– 1794 [Article] [Google Scholar]
  46. Fu X, Gao X. Effective Real-Time Unmanned Air Vehicle Path Planning in Presence of Threat Netting[J]. Journal of Aerospace Information Systems, 2014, 11 (4): 170– 177 [Article] [Google Scholar]
  47. Kamyar R, Taheri E. Aircraft Optimal Terrain/Threat-Based Trajectory Planning and Control[J]. Journal of Guidance Control and Dynamics, 2014, 37 (2): 466– 483 [Article] [Google Scholar]
  48. Mao H, Feng H, Zhang F, et al. Reconnaissance and Strike Integrated UAV's Path Planning in Autonomous Attack[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference, 2016 [Google Scholar]
  49. Zhanc Y, Chen J, Shen L C. Real-Time Trajectory Planning for UCAV Air-to-Surface Attack Using Inverse Dynamics Optimization Method and Receding Horizon Control[J]. Chinese Journal of Aeronautics, 2013, 26 (4): 1038– 1056 [Article] [Google Scholar]
  50. Gasparetto A, Boscariol P, Lanzutti A, et al. Path Planning and Trajectory Planning Algorithms:a General Overview[J]. Motion and Operation Planning of Robotic Systems, 2015, 29: 3– 27 [Article] [Google Scholar]
  51. Radmanesh M, Kumar M, Guentert P, et al. Overview of Path Planning and Obstacle Avoidance Algorithms for UAVs:a Comparative Study[J]. Unmanned Systems, 2018, 6 (2): 95– 118 [Article] [Google Scholar]
  52. Theis J, Pfifer H, Balas G, et al. Integrated Flight Control Design for a Large Flexible Aircraft[C]//American Control Conference, 2015 [Google Scholar]
  53. Schierman J D, Schmidt D K. Analysis of Airframe and Engine Control Interactions and Integrated Flight/Propulsion Control[J]. Journal of Guidance Control & Dynamics, 2015, 15 (6): 1388– 1396 [Article] [Google Scholar]
  54. Zhou Siyu, Wu Wenhai, Zhang Nan, et al. Overview of Autonomous Air Combat Maneuver Decision[J]. Aeronautical Computing Technique, 2012, 24 (1): 27– 31 [Article](in Chinese) [Google Scholar]
  55. Luo C, Wang J, Huang H, et al. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV[J]. Mathematical Problems in Engineering, 2016, 9: 1– 18 [Article] [Google Scholar]
  56. Zhang G, Jian W, Zhi L, et al. A Integrated Vehicle Health Management Framework for Aircraft-A Preliminary Report[C]//Prognostics & Health Management, 2015 [Google Scholar]
  57. Chang QI, Yuan Shenfang. Overview of Integrated Vehicle Health Management(IVHM) Technology and Development[J]. Systems Engineering and Electronics, 2009, 31 (11): 2652– 2657 [Article](in Chinese) [Google Scholar]
  58. Li X, Wang H, Yong S, et al. Integrated Vehicle Health Management in the Aviation Field[C]//Prognostics & System Health Management Conference, 2017 [Google Scholar]
  59. Heaton A, Verma R, Fan I S, et al. Defining Integrated Vehicle Health Management Requirements for Unmanned Aircraft Using a QFD Approach[C]//AIAA Infotech, 2013 [Google Scholar]
  60. Wu Wenhai, Zhang Yuanyuan, Zhou Siyu, et al. Overview of Pilot's Associate Program[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (12): 3563– 3577 [Article](in Chinese) [Google Scholar]
  61. Wu Wenhai, Zhang Yuanyuan, Liu Jintao, et al. Overall Architecture Design of New Generation Intelligent Cockpit[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (1): 290– 299 [Article](in Chinese) [Google Scholar]
  62. Maxwell K, Davis J. Artificial Intelligence Implications for Advanced Pilot/Vehicle Interface Design[C]//Digital Avionics Systems Conference, 2013 [Google Scholar]
  63. Xie X, Cheng H. Object Detection of Armored Vehicles Based on Deep Learning in Battlefield Environment[C]//International Conference on Information Science & Control Engineering, 2017 [Google Scholar]
  64. Jin Xin. Status and Development of Intelligent Command and Control[J]. Command Information System and Technology, 2017 (4): 10– 18 [Article](in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.