Open Access
Volume 38, Number 4, August 2020
Page(s) 705 - 714
Published online 06 October 2020
  1. Stevens B L, Lewis F L, Johnson E N. Aircraft Control and Simulation:Dynamics, Controls Design, and Autonomous Systems[M]. Hoboken, New Jersey:John Wiley & Sons, 2015 [CrossRef] [Google Scholar]
  2. Reigelsperger W C, Banda S S, Lemaster D P. Application of Multivariable Control Theory to Aircraft Control Laws[R]. WL-TR-96-3099, 1996 [Google Scholar]
  3. Snell S A, Enns D F, Garrard W L. Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 976-984 10.2514/3.20932 [NASA ADS] [CrossRef] [Google Scholar]
  4. Guo Suofeng, Shen Gongzhang, Wu Chengfu, et al. Advanced Flight Control System[M]. Beijing:National Defense Industry Press, 2003(in Chinese) [Google Scholar]
  5. Van't Veld R. C. Incremental Nonlinear Dynamic Inversion Flight Control[D]. Delft, Delft University of Technology, 2016 [Google Scholar]
  6. Harris J J. F-35 Flight Control Law Design, Development and Verification[C]//2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, 2018 [Google Scholar]
  7. Han Yinghua, Fan Yanming. Control System of Automatic Landing of UAV Based on Nonlinear Dynamic Inversion[J]. Acta Aeronautica et Astronautica Sinica, 2008(suppl 1): 66-72 [Article] (in Chinese) [Google Scholar]
  8. Zuo Junyi. Study of Thrust Vector Aircraft Control Law[D]. Xi'an: Northwestern Polytechnical University, 2003(in Chinese) [Google Scholar]
  9. Robinson A C. On the Use of Quaternions in Simulation of Rigid-Body Motion[R]. Tech, Rep, 1958: 58-17 [Google Scholar]
  10. Diebel J. Representing Attitude:Euler Angles, Unit Quaternions, and Rotation Vectors[J]. Matrix, 2006, 58(15/16): 1-35 [Google Scholar]
  11. Bacon B. Quaternion-Based Control Architecture for Determining Controllability Maneuverability Limits[C]//AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, 2012 [Google Scholar]
  12. Snell S, Garrard W, Enns D. Nonlinear Control of a Supermaneuverable Aircraft[C]//Guidance, Navigation and Control Conference, Boston, MA, 1989 [Google Scholar]
  13. Zhang Nan. Landing Control Law Design of Carrier Based Aircraft Using Nonlinear Dynamic Inversion[D]. Xi'an: Northwestern Polytechnical University, 2017(in Chinese) [Google Scholar]
  14. Wie B. Space Vehicle Dynamics and Control[M]. Tempe, Arizona:American Institute of Aeronautics and Astronautics Inc, 2008 [CrossRef] [Google Scholar]
  15. Aviation Industry Corporation of China. Flight Mechanics——Concepts, Quantities and Symbols[S]. GB/T 14410.1-2008(in Chinese) [Google Scholar]
  16. Zipfel P H. Modeling and Simulation of Aerospace Vehicle Dynamics[M]. Gainesville, Florida:American Institute of Aeronautics and Astronautics Inc, 2007 [CrossRef] [Google Scholar]
  17. Enomoto K. A Study on the Dynamic Inversion Method with Nonlinear Function Considering Saturation[C]//AIAA Guidance, Navigation, and Control Conference, Toronto, 2010 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.