Open Access
Volume 39, Number 1, February 2021
Page(s) 37 - 45
Published online 09 April 2021
  1. Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22–34 [Article] [Google Scholar]
  2. Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(12): 1123–1131 [Article] [Google Scholar]
  3. Shen Zhen, Chen Puhui, Liu Junshi, et al. Experimental study on the compressive failure mechanisms of dnmaged composite laminates[J]. ACTA Aeronautica et Astronautica Sinica, 1991, 12(3): 105–113 (in Chinese) [Google Scholar]
  4. Bogenfeld R, Kreikemeier J, Wille T. Review and benchmark study on the analysis of low-velocity impact on composite laminates[J]. Engineering Failure Analysis, 2018, 86: 72–99 [Article] [Google Scholar]
  5. Thorsson S I, Waas A M, Rassaian M. Numerical investigation of composite laminates subject to low-velocity edge-on impact and compression after impact[J]. Composite Structures, 2018, 203: 648–658 [Article] [Google Scholar]
  6. Zhang C, Duodu E A, Gu J. Finite element modeling of damage development in cross-ply composite laminates subjected to low velocity impact[J]. Composite Structures, 2017, 173: 219–227 [Article] [Google Scholar]
  7. Zhang J, Zhang X. An efficient approach for predicting low-velocity impact force and damage in composite laminates[J]. Composite Structures, 2015, 130: 85–94 [Article] [Google Scholar]
  8. Zhang J, Zhang X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact[J]. Composite Structures, 2015, 125: 51–57 [Article] [Google Scholar]
  9. Pederson J. Finite element analysis of carbon fiber composite ripping using ABAQUS[D]. Clemson, South Carolina: Clemson University, 2008 [Google Scholar]
  10. Tuo Hongliang, Ma Xiaoping, Lu Zhixian. A model for low velocity impact damage analysis of composite laminates based on continuum damage mechanics[J]. ACTA Materiae Compositae Sinica, 2018, 35(7): 1878–1888 (in Chinese) [Google Scholar]
  11. Li X, Ma D, Liu H, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 207: 727–739 [Article] [Google Scholar]
  12. Zhou J, Wen P, Wang S. Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 225: 111113 [Article] [Google Scholar]
  13. Krueger R. Virtual crack closure technique: history, approach, and applications[J]. Applied Mechanics Reviews, 2004, 57(2): 109–143 [Article] [Google Scholar]
  14. Camanho P P, Davila C G, De Moura M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415–1438 [Article] [Google Scholar]
  15. Hongkarnjanakul N, Bouvet C, Rivallant S. Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure[J]. Composite Structures, 2013, 106: 549–559 [Article] [Google Scholar]
  16. Duvaut G, Lions J L. Transfert de chaleur dans un fluide de bingham dont la viscosité dépend de la température[J]. Journal of Functional Analysis, 1972, 11(1): 93–110 [Article] [Google Scholar]
  17. Baant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155–177 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.