Open Access
Volume 39, Number 2, April 2021
Page(s) 309 - 316
Published online 09 June 2021
  1. He X. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248–264 [Article] [Google Scholar]
  2. Walander T, Eklind A, Carlberger T, et al.Prediction of mixed-mode cohesive fatigue strength of adhesively bonded structure using mode I data[J]. International Journal of Adhesion and Adhesives, 2016, 6615–25 [Article] [Google Scholar]
  3. Guo Kaite, Xie Zonghong, Li Xiang, et al.Ananalytical model and its validation for a composite double lap joints under unidirectional tension[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2194–2204 [Article] (in Chinese). [Google Scholar]
  4. XieMingjiu. Joints for composites materials, Shanghai: Shanghai Jiaotong University Press, 2011 (in Chinese) [Google Scholar]
  5. Guan Zhidong, Liu Debo, Li Xing, et al. Composite interlaminar damage analysis based on cohesive element[J]. Acta Materiae Compositae Sinica, 2012, 29(2): 130–134 [Article] (in Chinese) [Google Scholar]
  6. Lu Zixing. A simple review for cohesive zone models of composite interface and their applications[J]. Chinese Hournal of Solid Mechanics, 2015, 36(suppl 1): 85–94 [Article] (in Chinese) [Google Scholar]
  7. Yu Jianjian, Zhou Chuwei. Interface element model for fatigue delamination analysis of composites[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 167–172 [Article] (in Chinese) [Google Scholar]
  8. Zeng Haiyan, Yan Renjun, Xu Lin, et al. Experimental study on strength and fatigue of sandwich composite L-joint under bending[J]. Journal of Ship Mechanics, 2017, 21(12): 1540–1550 [Article] (in Chinese) [Google Scholar]
  9. Shi Haonan, Wang Jihui, Zhang Guiming. The research on damage and failure modes of composite L-joint[J]. Fiber Reinforced Plastics/Composites, 2019316–20 [Article] (in Chinese) [Google Scholar]
  10. Camanho P P, Dávila C G, Moura M D. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415–1438 [Article] [Google Scholar]
  11. Harper P W, Hallett S R. Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75(16): 4774–4792 [Article] [Google Scholar]
  12. Hu N, Zemba Y, Okabe T, et al. A new cohesive model for simulating delamination propagation in composite laminates under transverse loads[J]. Mechanics of Materials, 2008, 40(11): 920–935 [Article] [Google Scholar]
  13. Elmarakbi A M, Hu N, Fukunaga H. Finite element simulation of delamination growth in composite materials using LS-DYNA[J]. Composites Science and Technology, 2009, 69(14): 2383–2391 [Article] [Google Scholar]
  14. Khoramishad H, Crocombe A D, Katnam K B, et al. Predicting fatigue damage in adhesively bonded joints using a cohesive zone model[J]. International Journal of Fatigue, 2010, 32(7): 1146–1158 [Article] [Google Scholar]
  15. Turon A, Costa J, Camanho P P, et al. Simulation of delamination in composites under high-cycle fatigue[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(11): 2270–2282 [Article] [Google Scholar]
  16. Harper P. Fatigue of composite truss structures[D]. Bristol, University of Bristol, 2008 [Google Scholar]
  17. Kawashita L F, Hallett S R. A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials[J]. International Journal of Solids and Structures, 2012, 49(21): 2898–2913 [Article] [Google Scholar]
  18. Amiri-Rad A, Mashayekhi M, Van Der Meer F P. Cohesive zone and level set method for simulation of high cycle fatigue delamination in composite materials[J]. Composite Structures, 2017, 16061–69 [Article] [Google Scholar]
  19. Al-Azzawi A S M, Kawashita L F, Featherston C A. A modified cohesive zone model for fatigue delamination in adhesive joints: numerical and experimental investigations[J]. Composite Structures, 2019, 225111114[Article] [Google Scholar]
  20. Benzeggagh M L, Kenane M X. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439–449 [Article] [Google Scholar]
  21. Bak B L V, Turon A, Lindgaard E, et al. A benchmark study of simulation methods for high-cycle fatigue-driven delamination based on cohesive zone models[J]. Composite Structures, 2017, 164198–206 [Article] [Google Scholar]
  22. De Oliveira L A, Donadon M V. A cohesive zone model to predict fatigue-driven delamination in composites[J]. Engineering Fracture Mechanics, 2020, 235107124[Article] [Google Scholar]
  23. Asp L E, Sjögren A, Greenhalgh E S. Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading[J]. Journal of Composites Technology and Research, 2001, 23(2): 55–68 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.