Open Access
Volume 39, Number 2, April 2021
Page(s) 317 - 325
Published online 09 June 2021
  1. Ma Tao, Zhao Zhongmin, Liu Liangxiang, et al. The research development and future application of functionally gradient materials[J]. Science & Technology in Chemical Industry, 2012, 20(1): 71–75 [Article] (in Chinese) [Google Scholar]
  2. Ren X, Fan H, Wang C, et al. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind[J]. Smart Materials and Structures, 2018, 27(6): 065016[Article] [Google Scholar]
  3. Zeng X, Fan H, Zhang J. Prediction of the effects of particle and matrix morphologies on Al2O3 particle/polymer composites by finite element method[J]. Computational Materials Science, 2007, 40(3): 395–399 [Article] [Google Scholar]
  4. Wang B, Zhu D, Li C, et al. Performance of full compositional W/Cu functionally gradient materials under quasi-steady-state heat loads[J]. IEEE Trans on Plasma Science, 2018, 46(5): 1551–1555 [Article] [Google Scholar]
  5. Shishesaz M, Hosseini M, Naderan TAHAN K, et al. Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory[J]. Acta Mechanica, 2017, 228(12): 4141–4168 [Article] [Google Scholar]
  6. Stathopoulos V, Sadykov V, Pavlova S, et al. Design of functionally fraded multilayer thermal barrier coatings for gas turbine application[J]. Surface and Coatings Technology, 2016, 295: 20–28 [Article] [Google Scholar]
  7. Wan Y P, Sampath S, Prasad V, et al. An advanced model for plasma spraying of functionally graded materials[J]. Journal of Materials Processing Technology, 2003, 1371/2/3110–116 [Article] [Google Scholar]
  8. Shchukin A S, Vrel D, Sytschev A E. Interaction of NiAl intermetallic during SHS synthesis with Ta substrate[J]. Advanced Engineering Materials, 2018, 20(8): 1701077[Article] [Google Scholar]
  9. Huang Xutao, Yan Mi. Review and prospects of functionally gradient materials[J]. Materials Science and Engineering, 1997, 15(4): 35–38 [Article] (in Chinese) [Google Scholar]
  10. Spriggs R M. Expression for effect of porosity on elastic modulus of polycrystalline refractory materials, particularly aluminum oxide[J]. Journal of the American Ceramic Society, 1961, 44(12): 628–629 [Article] [Google Scholar]
  11. Pohanka R C, Rice R W, Walker B E. Effect of internal stress on the strength of BaTiO3[J]. Journal of the American Ceramic Society, 1976, 591/271–74 [Article] [Google Scholar]
  12. Wang J C. Young's modulus of porous materials[J]. Journal of Materials Science, 1984, 19(3): 809–814 [Article] [Google Scholar]
  13. Phani K K, Niyogi S K. Young's modulus of porous brittle solids[J]. Journal of Materials Science, 1987, 22(1): 257–263 [Article] [Google Scholar]
  14. Ramakrishnan N, Arunachalam V S. Effective elastic moduli of porous solids[J]. Journal of Materials Science, 1990, 25(9): 3930–3937 [Article] [Google Scholar]
  15. Kiran M C, Kattimani S. Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: a finite element study[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2020, 1(44): 61–82 [Article] [Google Scholar]
  16. Behravan Rad A, Shariyat M. Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations[J]. Composite Structures, 2015, 125558–574 [Article] [Google Scholar]
  17. Hong Ke, Yuan Ling, Shen Zhonghua, et al. Theoretical research on propagation characteristics of Lamb waves in porous FGMs[J]. Technical Acoustic, 2012, 31(6): 539–543 [Article] (in Chinese) [Google Scholar]
  18. Fahsi B, Bouiadjra R B, Mahmoudi A, et al. Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3D theory[J]. Mechanics of Composite Materials, 2019, 55(2): 219–230 [Article] [Google Scholar]
  19. Wattanasakulpong N, Charoensuk J. Vibration characteristics of stepped beams made of FGM using differential transformation method[J]. Meccanica, 2014, 50(4): 1089–1101 [Article] [Google Scholar]
  20. Elishakoff I, Pentaras D, Gentilini C. Mechanics of functionally graded material structures, Singapore: World Scientific Publishing Company, 2016 [Google Scholar]
  21. Zhang D, Zhou Y. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science, 2008, 44(2): 716–720 [Article] [Google Scholar]
  22. Sridhar A, Suris Y B. Commutativity in Lagrangian and Hamiltonian mechanics[J]. Journal of Geometry and Physics, 2019, 137154–161 [Article] [Google Scholar]
  23. Chakraverty S, Pradhan K K. Free vibration of functionally graded thin rectangular plates resting on Winkler elastic foundation with general boundary conditions using Rayleigh-Ritz method[J]. International Journal of Applied Mechanics, 2014, 6(4): 1450043 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.