Open Access
Issue
JNWPU
Volume 39, Number 3, June 2021
Page(s) 484 - 491
DOI https://doi.org/10.1051/jnwpu/20213930484
Published online 09 August 2021
  1. Tong Qingxi, Zhang Bin, Zheng Lanfen. Hyperspectral remote sensing: the principle, technology and application[M]. Beijing: Higher Education Press, 2006 (in Chinese) [Google Scholar]
  2. Manolakis D, Shaw G. Detection algorithm for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(1): 29–43 10.1109/79.974724 [NASA ADS] [CrossRef] [Google Scholar]
  3. Stein D, Beaven S, Hoff L, et al. Anomaly detection from hyperspectral imagery[J]. IEEE Signal Processing Magazine, 2002, 19(1): 58–69 10.1109/79.974730 [NASA ADS] [CrossRef] [Google Scholar]
  4. Matteoli S, Diani M, Corsini G. A tutorial overview of anomaly detection in hyperspectral images[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 5–28 10.1109/MAES.2010.5546306 [CrossRef] [Google Scholar]
  5. Reed I, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans on Acoustics Speech and Signal Processing, 1990, 38(10): 1760–1770 10.1109/29.60107 [NASA ADS] [CrossRef] [Google Scholar]
  6. Li W, Du Q. Decision fusion for dual-window-based hyperspectral anomaly detector[J]. Journal of Applied Remote Sensing, 2015, 9(1): 097297–097297 10.1117/1.JRS.9.097297 [NASA ADS] [CrossRef] [Google Scholar]
  7. Chen S, Wang W, Wu C, et al. Real-time causal processing of anomaly detection for hyperspectral imagery[J]. IEEE Trans on Aerospace and Electronic Systems, 2014, 50: 1511–1534 10.1109/TAES.2014.130065 [NASA ADS] [CrossRef] [Google Scholar]
  8. Zhao C, Wang Y, Qi B, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7(4): 3966–3985 10.3390/rs70403966 [NASA ADS] [CrossRef] [Google Scholar]
  9. Kwon H, Nasrabadi N. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2005, 43(2): 388–397 10.1109/TGRS.2004.841487 [NASA ADS] [CrossRef] [Google Scholar]
  10. He M, Mei H, Wu Y, Yan H. Weighted kernel-based signature subspace projection for hyperspectral target detection[C]//9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2018: 1–5 [Google Scholar]
  11. Banerjee A, Burlina P, Diehl C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2006, 44(8): 2282–2291 10.1109/TGRS.2006.873019 [NASA ADS] [CrossRef] [Google Scholar]
  12. Khazai S, Homayouni S, Safari A, et al. Anomaly detection in hyperspectral images based on an adaptive support vector method[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 646–650 10.1109/LGRS.2010.2098842 [NASA ADS] [CrossRef] [Google Scholar]
  13. Gurram P, Kwon H, Han T. Sparse kernel-based hyperspectral anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 943–947 10.1109/LGRS.2012.2187040 [NASA ADS] [CrossRef] [Google Scholar]
  14. Cui X, Tian Y, Weng L, et al. Anomaly detection in hyperspectral imagery based on low-rank and sparse decomposition[C]//International Society for Optics and Photonics International Conference on Graphic and Image Processing, 2014: 9069 [Google Scholar]
  15. Zhang Y, Du B, Zhang L et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Trans on Geoscience and Remote Sensing, 2016, 54(3): 1376–1389 10.1109/TGRS.2015.2479299 [NASA ADS] [CrossRef] [Google Scholar]
  16. Li W, Du Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Trans on Geoscience and Remote Sensing, 2015, 53(3): 1463–1474 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. Li W, Wu G, Du Q. Transferred deep learning for anomaly detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 597–601 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. Efros A, Leung T, et al. Texture synthesis by non-parametric sampling[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999: 1033–1038 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.