Open Access
Volume 39, Number 3, June 2021
Page(s) 492 - 501
Published online 09 August 2021
  1. Wang Qi, Chen Hang, Wang Yingmin, et al. Robust matched field localization algorithm based on least squares in shallow water[J]. Journal of Northwestern Polytechnical University, 2017, 35(3): 480–485 10.3969/j.issn.1000-2758.2017.03.019[Article] (in Chinese) [Google Scholar]
  2. Qiu J, Xing Z, Zhu C, et al. Centralized fusion based on interacting multiple model and adaptive Kalman filter for target tracking in underwater acoustic sensor networks[J]. IEEE Access, 2019, 7(7): 25948–25958 [Article] [CrossRef] [Google Scholar]
  3. Guo Xiaole, Yang Kunde, Ma Yuanliang, et al. Tracking-positioning of sound speed profiles and moving acoustic source in shallow water[J]. Acta Acustica, 2017, 42(1): 1–13 [Article] (in Chinese) [Google Scholar]
  4. Gao Fei, Sun Lei. Localization of moving acoustic source in shallow layer of deep ocean based on the time difference of arrival between the first and second waves[J]. Acta Armamentaria, 2018, 39(11): 2243–2248 10.3969/j.issn.1000-1093.2018.11.019 (in Chinese) [Google Scholar]
  5. Chen T. Source localization using matched-phase matched-field processing with phase descent search[J]. IEEE Journal of Oceanic Engineering, 2012, 37(2): 261–270 10.1109/JOE.2011.2181269 [NASA ADS] [CrossRef] [Google Scholar]
  6. Ensberg D. The swellex-96 experiment[EB/OL]. (1996-05-18)[2018-03-20]. [Google Scholar]
  7. Kusel E T, Siderius M. Comparison of propagation models for the characterization of sound pressure fields[J]. IEEE Journal of Oceanic Engineering, 2019, 44(3): 598–610 10.1109/JOE.2018.2884107 [NASA ADS] [CrossRef] [Google Scholar]
  8. Zhang T, Shi H, Chen L, et al. AUV positioning method based on tightly coupled SINS/LBL for underwater acoustic multipath propagation[J]. Sensors, 2016, 16(3): 357 10.3390/s16030357 [NASA ADS] [CrossRef] [Google Scholar]
  9. Mo J, Deng Z, Jia B, et al. A novel multipath mitigation method based on fast orthogonal search(FOS) for short-delay multipath with zero doppler shift difference[C]//Proceedings of 2018 China Satellite Navigation Conference, Harbin, 2018 [Google Scholar]
  10. Bcklin C L, Andersson C, Gustafsson M G. Self-tuning density estimation based on Bayesian averaging of adaptive kernel density estimations yields state-of-the-art performance[J]. Pattern Recognition, 2018, 78(1): 133–143 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Wang Rendong, Li Hua, Zhao Kai, et al. Robust localization based on kernel density estimation in dynamic diverse city scenes using lidar[J]. Acta Optica Sinica, 2019, 39(5): 1–10 [Article] (in Chinese) [CrossRef] [Google Scholar]
  12. Hong J, Fulton M, Sattar J. An evaluation of Bayesian methods for bathymetry-based localization of autonomous underwater robots[J/OL]. (2018-09-21)[2020-03-07]. [Google Scholar]
  13. Dalla Valle L, De Giuli M E, Tarantola C, et al. Default probability estimation via pair copula constructions[J]. European Journal of Operational Research, 2016, 249(1): 298–311 [Article] [CrossRef] [Google Scholar]
  14. Zhang Y, Wang T, Shi S, et al. Broadband underwater multi-source localization with a computationally efficient coherent OMP algorithm[J]. Applied Acoustics, 2016, 113(12): 70–80 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.