Open Access
Volume 39, Number 4, August 2021
Page(s) 831 - 838
Published online 23 September 2021
  1. Harmouche J, Delpha C, Diallo D. Improved fault diagnosis of ball bearings based on the global spectrum of vibration signals[J]. IEEE Trans on Energy Convers, 2015, 30(1): 376–383 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. Leite V, Borges J, Veloso G, et al. Detection of localized bearing faults in induction machines by spectral kurtosis and envelope analysis of stator current[J]. IEEE Trans on Industrial Electronics Electron, 2015, 62(3): 1855–1865 [Article] [CrossRef] [Google Scholar]
  3. Wang J, He Q, Kong F. Adaptive multiscale noise tuning stochastic resonance for health diagnosis of rolling element bearings[J]. IEEE Trans on Instrum Meas, 2015, 64(2): 564–577 [Article] [CrossRef] [Google Scholar]
  4. Seshadrinath J, Singh B, Panigrahi B. Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets[J]. IEEE Trans on Power Electron, 2014, 29(2): 936–945 [Article] [CrossRef] [Google Scholar]
  5. Jin X, Zhao M, Chow T, et al. Motor bearing fault diagnosis using trace ratio linear discriminant analysis[J]. IEEE Trans on Ind Electron, 2014, 61(5): 2441–2451 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. Immovilli F, Bianchini C, Cocconcelli M, et al. Bearing fault model for induction motor with externally induced vibration[J]. IEEE Trans on Ind Electron, 2013, 60(8): 3408–3418 [Article] [Google Scholar]
  7. Torregrossa D, Khoobroo A, Fahimi B. Prediction of acoustic noise and torque pulsation in PM synchronous machines with static eccentricity and partial demagnetization using field reconstruction method[J]. IEEE Trans on Ind Electron, 2012, 59(2): 934–944 [Article] [Google Scholar]
  8. Stack J, Habetler T, Harley R. Fault-signature modeling and detection of inner-race bearing faults[J]. IEEE Trans on Industry Applications Appl, 2006, 42(1): 61–68 [Article] [Google Scholar]
  9. Singleton R, Strangas E, Aviyente S. Extended Kalman filtering for remaining-useful-life estimation of bearings[J]. IEEE Trans on Ind Electron, 2015, 62(3): 1781–1790 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. Randall R B, Antoni J, Chobsaard S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals[J]. Mech Syst Signal Process, 2001, 15(5): 945–962 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Barszcz T, Jablónski A. A novel method for the optimal band selection for vibration signal demodulation and comparison with the kurtogram[J]. Mech Syst Signal Process, 2011, 25(1): 431–451 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. Kang M, Kim J, Kim J M. High-performance and energy efficient fault diagnosis using effective envelope analysis and denoising on a general-purpose graphics processing unit[J]. IEEE Trans on Power Electron, 2015, 30(5): 2763–2776 [Article] [CrossRef] [Google Scholar]
  13. Antoni J. Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions[J]. Journal of Sound and Vibration, 2007, 304(3/4/5): 497–529 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. Urbanek J, Antoni J, Barszcz T. Detection of signal component modulations using modulation intensity distribution[J]. Mech Syst Signal Process, 2012, 28: 399–413 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. Mcfadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration, 1984, 96(1): 69–82 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  16. Antoni J, Randall R B. A stochastic model for simulation and diagnostics of rolling element bearings with localized faults[J]. Journal of Vibration & Acoustics Transactions of the ASME, 2003, 125(3): 282–289 [Google Scholar]
  17. Epps I, Mccallion H. An investigation into the characteristics of vibration excited by discrete faults in rolling element bearings[C]//4th Annual Conference of Vibration Association of New Zealand, Christchurch, 1994 [Google Scholar]
  18. Sawalhi N, Randall R B. Vibration response of spalled rolling element bearings observations, simulations and signal processing techniques to track the spall size[J]. Mech Syst Signal Process, 2011, 25(3): 846–870 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  19. Elforjani M, Mba D. Accelerated natural fault diagnosis in slow speed bearings with acoustic emission[J]. Eng Fract Mech, 2010, 77(1): 112–127 [Article] [Google Scholar]
  20. Sandy J. Monitoring and diagnostics for rolling element bearings[J]. Sound and Vibration, 1988, 20(6): 1–20 [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.