Open Access
Volume 39, Number 5, October 2021
Page(s) 1005 - 1011
Published online 14 December 2021
  1. Vafa Z, Dubowsky S. On the dynamics of manipulators in space using the virtual manipulator approach[C]//1987 IEEE International Conference on Robotics and Automation, 1987: 579–585 [Google Scholar]
  2. Vafa Z, Dubowsky S. On the dynamics of space manipulators using the virtual manipulator, with applications to path planning[M]. Springer, Boston, MA, 1993: 45–76 [Google Scholar]
  3. Nakamura Y, Mukherjee R. Non-holonomic path planning of space robots via bi-directional approach[C]//IEEE International Conference on Robotics and Automation, 1990: 1764–1769 [Google Scholar]
  4. Fernandes C, Gurvits L, Li Z. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies[J]. IEEE Trans on Automatic Control, 1994, 39(3): 450–463 [Article] [CrossRef] [Google Scholar]
  5. Xu W, Li C, Wang X, et al. Study on non-holonomic cartesian path planning of a free-floating space robotic system[J]. Advanced Robotics, 2009, 23(1/2): 113–143 [Google Scholar]
  6. Wang M, Luo J, Walter U. Trajectory planning of free-floating space robot using particle swarm optimization(PSO)[J]. Acta Astronautica, 2015, 112: 77–88 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Wang M, Luo J, Fang J, et al. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm[J]. Advances in Space Research, 2018, 61(6): 1525–1536 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. Yamada K. Arm path planning for a space robot[C]//Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1993: 2049–2055 [Google Scholar]
  9. Suzuki T, Nakamura Y. Planning spiral motion of non-holonomic space robots[C]//Proceedings of IEEE International Conference on Robotics and Automation, 1996: 718–725 [Google Scholar]
  10. Misra G, Bai X. Task-constrained trajectory planning of free-floating space-robotic systems using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2857–2870 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Lavalle S M, Kuffner J R J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378–400 [Article] [Google Scholar]
  12. Bertram D, Kuffner J, Dillmann R, et al. An integrated approach to inverse kinematics and path planning for redundant manipulators[C]//2006 IEEE International Conference on Robotics and Automation, 2006: 1874–1879 [Google Scholar]
  13. Weghe M V, Ferguson D, Srinivasa S S. Randomized path planning for redundant manipulators without inverse kinematics[C]//7th IEEE-RAS International Conference on Humanoid Robots, 2007: 477–482 [Google Scholar]
  14. Xu Wenfu. Path planning and experiment study of space robot for target capturing[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.