Open Access
Volume 39, Number 5, October 2021
Page(s) 937 - 944
Published online 14 December 2021
  1. Chen Kean. Active noise control[M], Beijing: Aotion Defence Indeustny Press, 2014 (in Chinese) [Google Scholar]
  2. Rafaely B, Elliott S J, Garcia-Bonito J. Broadband performance of an active headrest[J]. The Journal of Acoustic of Society of America, 1999, 106(2): 787–793 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Garcia-Bonito J, Elliott S J. Generation of zones of quiet using a virtual microphone arrangement[J]. The Journal of Acoustic of Society of America, 1997, 101(6): 3498–3516 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  4. Moreau D, Cazzolato B, Zander A, et al. A review of virtual sensing algorithms for active noise control[J]. Algorithms, 2008, 1(2): 69–99 [Article] [CrossRef] [Google Scholar]
  5. Li Nan, Yang Feiran, Yang Jun. An adaptive active noise method without an error microphone based on virtual microphone technique[J]. Journal of Applied Acoustics, 2019, 38(1): 85–92 [Article] (in Chinese) [Google Scholar]
  6. Yuan J. Virtual sensing for broadband noise control in a lightly damped enclosure[J]. The Journal of Acoustic of Society of America, 2004, 116(2): 934–941 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  7. Roure A, Albarrazin A. The remote microphone technique for active noise control[C]//The International Symposium on Active Control of Sound and Vibration, 1999: 1233–1244 [Google Scholar]
  8. Kestell C D, Cazzolato B S, Hansen C H. Active noise control in a free field with virtual sensors[J]. The Journal of Acoustic of Society of America, 2001, 109(1): 232–243 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. Diaz J. A local active noise control system based on a virtual-microphone technique for railway sleeping vehical applications[J]. Mechanical System and Signal Processing, 2006, 20(8): 2259–2276 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. Petersena C D, Fraanjeb R, Cazzolatoa B S, et al. A Kalman filter approach to virtual sensing for active noise control[J]. Mechanical System and Signal Processing, 2008, 22: 490–508 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Lopes P A C, Piedade M S. A Kalman filter approach to avtive noise control[C]//European Signal Processing Conference, 2000 [Google Scholar]
  12. Lopes P A C, Gerald J A B, Piedade M S. The random walk model Kalman filter in multichannel active noise control[J]. IEEE Signal Processing Letters, 2015, 22(12): 2244n2248 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  13. Van Ophem S, Berkhoff A P. Multi-channel Kalman filters for active noise control[J]. The Journal of Acoustic of Society of America, 2013, 133(4): 2105–2115 [NASA ADS] [CrossRef] [Google Scholar]
  14. Liebich S, Fabry J, Jax P, et al. Time-domain Kalman filter for active noise cancellation headphone[C]//European Signal Processing Conference, 2017: 593–597 [Google Scholar]
  15. Sayed A H. Fundamentals of adaptive filtering[M], Hoboken: John Wiley and Sons, 2003 [Google Scholar]
  16. Sayed A H, Kailath T. Extended Chandrasekhar Recursions[J]. IEEE Trans on Automatic Control, 1994, 39(3): 619–623 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.