Open Access
Issue
JNWPU
Volume 39, Number 5, October 2021
Page(s) 954 - 961
DOI https://doi.org/10.1051/jnwpu/20213950954
Published online 14 December 2021
  1. Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89 [Article] [CrossRef] [Google Scholar]
  2. Li B, Zhou S, Stojanovic M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198–209 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Farhang A, Rezazadehreyhani A, Doyle L E, et al. Low complexity modem structure for OFDM-based orthogonal time frequency space modulation[J]. IEEE Wireless Communications Letters, 2017, 7(3): 344–347 [Google Scholar]
  4. Monk A, Hadani R, Tsatsanis M, et al. OTFS-orthogonal time frequency space[J/OL]. (2016-08-09)[2020-12-29]. https://arXiv.org/abs/1608.02993 [Google Scholar]
  5. Hadani R, Rakib S, Molisch A F, et al. Orthogonal time frequency space(OTFS) modulation for millimeter-wave communications systems[C]//2017 IEEE MTT-S International Microwave Symposium, 2017: 681–683 [Google Scholar]
  6. Raviteja P, Phan K T, Hong Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Trans on Wireless Communications, 2018, 17(10): 6501–6515 [Article] [Google Scholar]
  7. Raviteja P, Phan K T, Jin Q, et al. Low-complexity iterative detection for orthogonal time frequency space modulation[C]//2018 IEEE Wireless Communications and Networking Conference, 2018: 1–6 [Google Scholar]
  8. Yuan W, Wei Z, Yuan J, et al. A simple variational Bayes detector for orthogonal time frequency space(OTFS) modulation[J]. IEEE Tran on Vehicular Technology, 2020, 69(7): 7976–7980 [Article] [Google Scholar]
  9. Yuan Z, Liu F, Yuan W, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing[J/OL]. (2021-07-21)[2021-09-27]. [Article] [Google Scholar]
  10. Li L, Liang Y, Fan P, et al. Low complexity detection algorithms for OTFS under rapidly time-varying channel[C]//2019 IEEE 89th Vehicular Technology Conference, 2019: 1–5 [Google Scholar]
  11. Murali K R, Chockalingam A. On OTFS modulation for high-Doppler fading channels[C]//2018 Information Theory and Applications Workshop, 2018: 1–10 [Google Scholar]
  12. Cheng J, Gao H, Xu W, et al. Low-complexity linear equalizers for OTFS exploiting two-dimensional fast Fourier transform[J/OL]. (2019-09-02)[2021-12-29]. https://arxiv.org/abs/1909.00524 [Google Scholar]
  13. Surabhi G D, Chockalingam A. Low-complexity linear equalization for OTFS modulation[J]. IEEE Communications Letters, 2020, 24(2): 330–334 [Article] [CrossRef] [Google Scholar]
  14. Tiwari S, Das S S, Rangamgari V. Low complexity LMMSE receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12): 2205–2209 [Article] [CrossRef] [Google Scholar]
  15. Chen J. A low complexity data detection algorithm for uplink multiuser massive MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1701–1714 [Article] [CrossRef] [Google Scholar]
  16. Seidel P, Paul S, Rust J. Low-complexity 2-coordinates descent for near-optimal MMSE soft-output massive MIMO uplink data detection[C]//2019 27th European Signal Processing Conference, 2019: 1–5 [Google Scholar]
  17. Wright S J. Coordinate descent algorithms[J]. Mathematical Programming, 2015, 151(1): 3–34 [Article] [Google Scholar]
  18. Raviteja P, Hong Y, Viterbo E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Trans on Vehicular Technology, 2019, 68(1): 957–961 [Article] [CrossRef] [Google Scholar]
  19. Socheleau F X, Laot C, Passerieux J M. A maximum entropy framework for statistical modeling of underwater acoustic communication channels[C]//Oceans'10 IEEE, Sydney, 2010: 1–7 [Google Scholar]
  20. Zeng W J, Xu W. Fast estimation of sparse doubly spread acoustic channels[J]. The Journal of the Acoustical Society America, 2012, 131(1): 303–317 [Article] [CrossRef] [Google Scholar]
  21. Qu F, Nie X, Xu W. A two-stage approach for the estimation of doubly spread acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2014, 40(1): 131–143 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.