Open Access
Issue
JNWPU
Volume 39, Number 6, December 2021
Page(s) 1266 - 1273
DOI https://doi.org/10.1051/jnwpu/20213961266
Published online 21 March 2022
  1. Fish F E, Battle J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1): 51–60 [Article] [CrossRef] [Google Scholar]
  2. Johari H, Henoch C W, Custodio D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11): 2634–2642 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. Wei Z, New T H, Cui Y D. An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low Reynolds number[J]. Ocean Engineering, 2015, 108(1): 336–349 [Article] [CrossRef] [Google Scholar]
  4. Pena B, Muk-Pavic E, Thomas G, et al. Numerical analysis of a leading edge tubercle hydrofoil in turbulent regime[J]. Journal of Fluid Mechanics, 2019, 878292–305 [Article] [CrossRef] [Google Scholar]
  5. HANSEN K L, KELSO R M, DOOLAN C J. Reduction of flow induced tonal noise through leading edge tubercle modifications[C]//16th AIAA/CEAS Aeroacoustics Conference, 2010 [Google Scholar]
  6. CHONG T, VATHYLAKIS A, MCEWEN A, et al. Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges[C]//21st AIAA/CEAS Aeroacoustics Conference, 2015 [Google Scholar]
  7. Shi Lei, Zhang Chengchun, Wang Jing, et al. Reduction of aerodynamic noise from NACA0018 airfoil model using bionic methods[J]. Journal of Jilin University, 2011, 41(6): 1664–1668 [Article] (in Chinese) [Google Scholar]
  8. GRUBER M, JOSEPH P, POLACSEK C, et al. Noise reduction using combined trailing edge and leading edge serrations in a tandem airfoil experiment[C]//18th AIAA/CEAS Aeroacoustics Conference, 2012 [Google Scholar]
  9. Clair V, Polacsek C, Garrec T L, et al. Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges[J]. AIAA Journal, 2013, 51(11): 2695–2713 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. PARUCHURI C C, NARAYANAN S, JOSEPH P, et al. Leading edge serration geometries for significantly enhanced leading edge noise reductions[C]//22nd AIAA/CEAS Aeroacoustics Conference, 2016 [Google Scholar]
  11. Turner J M, Kim J W. On the universal trends in the noise reduction due to wavy leading edges in aerofoil-vortex interaction[J]. Journal of Fluid Mechanics, 2019, 871186–211 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  12. CHEN W, QIAO W, WANG X, et al. An experimental and numerical investigation of airfoil instability noise with leading edge serrations[C]//22nd AIAA/CEAS Aeroacoustics Conference, 2016 [Google Scholar]
  13. Chen W, Qiao W, Duan W, et al. Experimental study of airfoil instability noise with wavy leading edges[J]. Applied Acoustics, 2021, 172(5): 107671 [Article] [CrossRef] [Google Scholar]
  14. JIANG Hui. Reaearch on hydrodynamic and noise performance of bionic propeller[D]. Harbin: Harbin Engineering University, 2016 (in Chinese) [Google Scholar]
  15. Wang M, Freund J B, Lele S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics, 2005, 38(1): 483–512 [Google Scholar]
  16. Casalino D, Jacob M, Roger M. Prediction of rod-airfoil interaction noise using the Ffowcs-Williams-Hawkings analogy[J]. AIAA Journal, 2015, 41(5): 182–191 [Article] [Google Scholar]
  17. GIRET J C, SENGISSEN A, MOREAU S, et al. Prediction of the sound generated by a rod-airfoil configuration using a compressible unstructured les solver and a FW-H analogy[C]//18th AIAA/CEAS Aeroacoustics Conference, 2012 [Google Scholar]
  18. Chen W, Qiao W, Tong F, et al. Numerical investigation of wavy leading edges on rod-airfoil interaction noise[J]. AIAA Journal, 2018, 56(7): 2553–2567 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  19. Tang Weilin, Yu Mengsa, Wang Bin. Theory of hydrodynamic noise[M]. Beijing: The Science Publishing Company, 2019 (in Chinese) [Google Scholar]
  20. Jacob M C, Boudet J, Casalino D, et al. A rod-airfoil experiment as a benchmark for broadband noise modeling[J]. Theoretical & Computational Fluid Dynamics, 2005, 19(3): 171–196 [Article] [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.