Open Access
Volume 39, Number 6, December 2021
Page(s) 1395 - 1403
Published online 21 March 2022
  1. Yang Jingning, Ma Liansheng. Composite mechanics[M]. Beijing : National Defense Industry Press, 2014 (in Chinese) [Google Scholar]
  2. Cisse C, Zaki W, Zineb T B, et al. A review of constitutive models and modeling techniques for shape memory alloys[J]. International Journal of Plasticity, 2016(76) : 244–284 [Article] [Google Scholar]
  3. Zhou B. A macroscopic constitutive model of shape memory alloy considering plasticity[J]. Mechanics of Materials, 2012, 48(5) : 71–81 [Article] [Google Scholar]
  4. Mahesh K K, Fernandes F B, Gurau G. Phase transformation in Ni-Ti shape memory and superelastic alloys subjected to high pressure torsion[J]. Advanced Materials Research, 2010(123/124/125) : 1007–1010 [Article] [CrossRef] [Google Scholar]
  5. Khaleghi F, Tajally M, Emadoddin E, et al. Functionally graded shape memory alloy by diffusion annealing of palladium-coated NiTi plates[J]. Metals & Materials International, 2017, 23(5) : 915–922 [Article] [Google Scholar]
  6. Bogdanski D, Kller M, Dietmar M, et al. Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally graded Ni-NiTi-Ti material[J]. Biomaterials, 2002, 23(23) : 4549–4555 10.1016/S0142-9612(02)00200-4 [Google Scholar]
  7. Cole D, Bruck H, Roytburd A. Fabrication and characterization of graded shape memory alloy thin films[C]//Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2007 [Google Scholar]
  8. Cole D, Bruck H, Roytburd A. Nanomechanical characterisation of graded NiTi films fabricated through diffusion modification[J]. Strain, 2009, 45(3) : 232–237 10.1111/j.1475-1305.2008.00613.x [CrossRef] [Google Scholar]
  9. Viet N V, Zaki W, Umer R. Analytical model of functionally graded material/shape memory alloy composite cantilever beam under bending[J]. Composite Structures, 2018, 203(12) : 764–776 [Article] [Google Scholar]
  10. Liu B F, Peng C N, Zhang W. On behaviors of functionally graded SMAs under thermo mechanical coupling[J]. Acta Mechanica Solida Sinica, 2016, 29(1) : 46–58 10.1016/S0894-9166(16)60006-X [CrossRef] [Google Scholar]
  11. Xue Lijun, Dui Guansuo, Liu Bingfei. Theoretical analysis of functionally graded shape memory alloy beam subjected topure bending[J]. Journal of Mechanical Engineering, 2012, 48(22) : 40–45 [Article] (in Chinese) [Google Scholar]
  12. Xue Lijun. Studies on the thermal-mechanical properties of functionally graded shape memory alloy beam[D]. Beijing: Beijing Jiaotong University, 2014 (in Chinese) [Google Scholar]
  13. Kang Zetian, Zhou Bo, Xue Shifeng. Mechanical behaviors of functionally graded shape memory alloy composite beam[J]. Acta Materiae Compositae Sinica, 2019, 36(8) : 1901–1910 [Article] (in Chinese) [Google Scholar]
  14. Cui Shitang, Jiang Xiquan, Yan Jun. Theoretical analysis of shape memory alloy beam subjected pure bending[J]. Chinese Journal of Applied Mechanics, 2016, 33(1) : 43–49 [Article] (in Chinese) [Google Scholar]
  15. Reedlunn B, Churchill C B, Nelson E E, et al. Tension compression, and bending of superelastic shape memory alloy tubes[J]. Journal of the Mechanics and Physics of Solids, 2014, 63 : 506–537 10.1016/j.jmps.2012.12.012 [Google Scholar]
  16. Brinson L C. One-dimensional constitutive behavior of shape memory alloys: thermo mechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of Intelligent Material Systems and Structure, 1993, 4(2) : 229–242 10.1177/1045389X9300400213 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.