Open Access
Issue
JNWPU
Volume 40, Number 1, February 2022
Page(s) 1 - 17
DOI https://doi.org/10.1051/jnwpu/20224010001
Published online 02 May 2022
  1. Ye Jingshen, Zhang Baohong, Yu Jianmin, et al. Research progress of component with rib forming technology[J]. China Metal Forming Equipment & Manufacturing Technology, 2015, 50(2): 7–10 [Article] (in Chinese) [Google Scholar]
  2. Munroe J, Wilkins K, Gruber M. Integral airframe structures(IAS)-validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs[R]. NASA/CR-2000-209337, 2000 [Google Scholar]
  3. Sheng Z Q, Shivpuri R. A hybrid process for forming thin-walled magnesium parts[J]. Materials Science & Engineering A, 2006, 428(1/2): 180–187 [CrossRef] [Google Scholar]
  4. Altan T. Forging equipment, materials ans practices[M]. Lu Suo, Trans. Beijing: National Defense Industry Press, 1982: 199–200 (in Chinese) [Google Scholar]
  5. Welschof KKopp R. Incremental forging-a flexible forming technology which improves energy and material efficiency[J]. Aluminium, 1987, 63(2): 168–172 [Google Scholar]
  6. Kopp R, Schaeffer L, Schuler G. Incremental forging with integrated open-die-forging presses[J]. MPT Metallurgical Plant and Technology, 1982, 5(6): 78–81 [Google Scholar]
  7. Yang H. Creep age forming investigation on aluminum alloy 2219 and related studies[D]. London: Imperial College London, 2013 [Google Scholar]
  8. Nghiep T N, Sarhan A A D, Aoyama H. Analysis of tool deflection errors in precision CNC end milling of aerospace aluminum 6061-T6 alloy[J]. Measurement, 2018, 125: 476–495 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. Sun Y, Jiang S. Predictive modeling of chatter stability considering force-induced deformation effect in milling thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018, 135: 38–52 [Article] [CrossRef] [Google Scholar]
  10. Li B, Jiang X, Yang J, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216: 223–233 [Article] [CrossRef] [Google Scholar]
  11. Xiao Shulong, Chen Yuyong, Zhu Hongyan, et al. Recent advances on precision casting of large thin wall complex castings of titanium alloys[J]. Rare Metal Materials and Engineering, 2006, 35(5): 4 [Article] (in Chinese) [Google Scholar]
  12. Hong Shenzhang. Cold extrusion practical technology, Beijing: China Machine Press, 2014 (in Chinese) [Google Scholar]
  13. She Bin. Analysis and numerical simulation of cold extrusion forming process on thin-walled and cone-shaped part[D]. Beijing: University of Science and Technology Beijing, 2005 (in Chinese) [Google Scholar]
  14. Xu Langui. Study on the key technology of thin-walled aluminum can forming with variable thickness and large tapers[D]. Guangzhou: South China University of Technology, 2010 (in Chinese) [Google Scholar]
  15. Ren Jie. Study on extrusion forming technology of 5A06 aluminum alloy base[D]. Taiyuan: North University of China, 2013 (in Chinese) [Google Scholar]
  16. He Chenchen, Li Guojun, Zhang Zhimin, et al. Study on extrusion forming of 2A12 aluminum alloy thin-walled trapezoidal ring with ribs[J]. Hot Working Technology, 2018, 47(7): 121–125 [Article] (in Chinese) [Google Scholar]
  17. Luo Wusi, Zhang Baohong, Li Guojunet al. Simulation analysis and optimization of the extrusion defects of the box-shaped workpiece with ribs of 5A06 aluminum alloy[J]. Light Alloy Fabrication Technology, 2017, 45(3): 39–45[Article] (in Chinese) [Google Scholar]
  18. Qin GaokeStudy on process forming of aluminum alloy products with abnormal shapes[D]. Taiyuan: North University of China, 2009 (in Chinese) [Google Scholar]
  19. Li Dayong, Luo Chao, Zhou Fei, et al.Simulation of thin-walled aluminum decoration part extrusion process with multi-stage finite volume method[J]. Trans of Nonferrous Metals Society of China, 2004 (8): 1360–1365[Article] (in Chinese) [Google Scholar]
  20. Fang G, Zhou J, Jurek D. Extrusion of 7075 aluminium alloy through double-pocket dies to manufacture a complex profile[J]. Journal of Materials Processing Technology, 2009, 209(6): 3050–3059[Article] [CrossRef] [Google Scholar]
  21. Hu Longfei, Liu Quankun, Wang Chengyonget al. Optimal design of aluminum alloy flat-plate extrusion process based on the response surface model[J]. China Mechanical Engineering, 2008 (13): 1630–1633[Article] (in Chinese) [Google Scholar]
  22. WangZhe. Application of cold extruded titanium alloy to modern aircraft structures[J]. Titanium Industry Progress, 1997 (6): 24–25[Article] (in Chinese) [Google Scholar]
  23. Li Chenggong, Zeng Fanchang. Progress of Russian isothermal forging technology[J]. Aeronautical Science and Technology, 1996 (5): 4[Article] (in Chinese) [Google Scholar]
  24. Somani M C, Sundaresan R, Kaibyshev O Aet al. Deformation processing in superplasticity regime-production of aircraft engine compressor discs out of titanium alloys[J]. Materials Science & Engineering A 1998243(1/2): 134–139 [CrossRef] [Google Scholar]
  25. Guo X, Dong D, Su Set al. Hot extrusion precision forming research on 5A06 aluminum alloy pedestal[J]. Aerospace Manufacturing Technology, 2019127–31 [Google Scholar]
  26. Wang Qiwei. Study on precision forging process of 5A06 aluminum alloy ring joint frame[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese) [Google Scholar]
  27. ZhaoJ, DengY, ZhangJ, et al. Effect of forging speed on the formability, microstructure and mechanical properties of isothermal precision forged of Al-Zn-Mg-Cu alloy[J]. Materials Science & Engineering A, 2019767(8): 138366 [CrossRef] [Google Scholar]
  28. PanYuejin, WuYuejiang. Study on isothermal forging process of 2024 aluminum alloy precision parts[J]. Forging & Stamping Technology, 201439(1): 4[Article](in Chinese) [Google Scholar]
  29. Li Xubin. Study on monolithic forming technology for aldural complex rib-web component[D]. Taiyuan: North University of China, 2015 (in Chinese) [Google Scholar]
  30. 约翰·M·萨尔基相, 约翰·R·帕利奇, 小约瑟夫·J·泽克. 分步骤成段闭模锻压法[P]. CN1142791A, 1997 [Google Scholar]
  31. Sarkisian J M, Palitsch J R, Zecco J J. Stepped, segmented, closed-die forging[P]. US5950481, 1999 [Google Scholar]
  32. KoppR, SchmitzA. Plastic working in Germany and related environmental issues[J]. Journal of Materials Processing Technology, 199659(3): 186–198[Article] [CrossRef] [Google Scholar]
  33. YangPing, ShanDebiao, GaoShuangshenget al. Research on isothermal precision technology of rib-web forging parts[J]. Forging & Stamping Technology, 2006 (3): 55–58[Article] (in Chinese) [Google Scholar]
  34. XueKemin, HaoNanhai. Isothermal precision forging of MB15 magnesium alloy upper casing[J]. The Chinese Journal of Nonferrous Metals, 19988(1): 7–10[Article] (in Chinese) [Google Scholar]
  35. Yang H, Li H W, Fan X G, et al. Technologies for advanced forming of large-scale complex-structure titanium components[C]//Proceedings of the 10th International Conference on Technology of Plasticity, 2011 [Google Scholar]
  36. ZhangD W, YangH, SunZ C. Analysis of local loading forming for titanium-alloy T-shaped components using slab method[J]. Journal of Materials Processing Technology, 2010210(2): 258–266[Article] [CrossRef] [Google Scholar]
  37. WuYuejiang, YangHe, SunZhichaoet al. Simulation on influence of local loading conditions on material flow during rib-web components forming[J]. China Mechanical Engineering, 2006 (suppl 1): 12–15[Article] (in Chinese) [Google Scholar]
  38. Li Zhiyan. Research on marco-microcosmic deforming in isothermal local loading transition region for large-scale complex integral components of TA15 titanium alloy[D]. Xi'an: Northwestern Polytechnical University, 2008 (in Chinese) [Google Scholar]
  39. SunZhichao, YangHe, LiZhiyan. H-shaped component isothermal local loading forming of TA15 titanium alloy[J]. Rare Metal Materials and Engineering, 2009, 38(11): 1904–1909[Article] (in Chinese) [Google Scholar]
  40. SunZ C, YangH. Analysis on process and forming defects of large-scale complex integral component isothermal local loading[J]. Matericols Scipence Forcum, 2009614117–122. [Google Scholar]
  41. Sun Nianguang. Research on forming rules and defects of titanium alloy ribbed plate components under isothermal local loading[D]. Xi'an: Northwestern Polytechnical University, 2008 (in Chinese) [Google Scholar]
  42. Zhang Dawei, Yang He, Sun Zhichao, et al. Macro and micro model of local loading isothermal forming of large complex stiffened plate components[C]//Proceedings of the third National Symposium on Precision Forging of China, 2008 (in Chinese) [Google Scholar]
  43. SunZhichao, YangHe, SunNianguang. Simulation on local loading partition during titanium bulkhead isothermal forming process[J]. Journal of Plasticity Engineering, 200916(1): 138–143[Article] (in Chinese) [Google Scholar]
  44. SunNianguang, YangHe, SunZhichao. Optimization on the process of large titanium bulkhead isothermal closed-die forging[J]. Rare Metal Materials and Engineering, 200938(7): 1296–1300[Article] (in Chinese) [Google Scholar]
  45. PengFeifei, YangHe, SunZhichaoet al. Simulation on billet preforming process of large-scale complex part of titanium alloy[J]. Journal of Plasticity Engineering, 200815(5): 47–52[Article] (in Chinese) [Google Scholar]
  46. ZhouW J, SunZ C, ZuoS P, et al. Shape optimization of initial billet for TA15 ti-alloy complex components preforming[J]. Rare Metal Materials and Engineering, 201140(6): 951–956[Article] [CrossRef] [Google Scholar]
  47. Sun Z C, YangH. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming[J]. Materials Science & Engineering A, 2009523(1/2): 184–192 [CrossRef] [Google Scholar]
  48. FanX G, YangH, SunZ C, et al. Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming[J]. Materials Science & Engineering A, 2010527(21/22): 5391–5399 [CrossRef] [Google Scholar]
  49. Fan X G, GaoP F, YangH. Microstructure evolution of the transitional region in isothermal local loading of TA15 titanium alloy[J]. Materials Science & Engineering A, 2011, 528(6): 2694–2703 [CrossRef] [Google Scholar]
  50. Gao P F, Yang H, Fan X G. Quantitative analysis of the microstructure of transitional region under multi-heat isothermal local loading forming of TA15 titanium alloy[J]. Materials & Design, 201132(4): 2012–2020 [CrossRef] [Google Scholar]
  51. Kopp R, Bohlke P. A new rolling process for strips with a defined cross section[J]. CIPR Annals-Manufacturing Technology, 2003, 52(1): 197–200 [Article] [CrossRef] [Google Scholar]
  52. Ryabkov N, Jackel F, Putten K V, et al.. Production of blanks with thickness transitions in longitudinal and lateral direction through 3D-strip profile rolling[J]. International Journal of Material Forming, 2008, 1(suppl 1): 391–394 [CrossRef] [Google Scholar]
  53. JiangZhengyi, LiuXianghua. Experimental study on continuous rolling of strip steel with longitudinal ribs[J]. Materials Science and Technology, 1993, 1(1): 5[Article] (in Chinese) [Google Scholar]
  54. MaoHuajie, ZhaoYaoning, LanJian. Research on rolling law and limit for plate with longitudinal rib[J]. Forging & Stamping Technology, 2020, 45(8): 49–55[Article] (in Chinese) [Google Scholar]
  55. 温彤, 张梦, 胡金, 等. 基于辊压的整体壁板筋肋压型与弯曲一体化成形方法[P]. CN107186063A, 2017 [Google Scholar]
  56. Hu Jin, Wen Tong, Zhang Meng, et al. Optimization on rolling process parameters for rib stiffened plates based on respond surface method[J]. Forging & Stamping Technology, 2019, 44(8): 35–40[Article] (in Chinese) [Google Scholar]
  57. Wang Danchen, Zhang Chengji, Bian Yi, et al. Influence of forging method on microstructure of spoke for aluminum alloy wheel[J]. Forging & Stamping Technology, 201843(5): 1–5[Article] (in Chinese) [Google Scholar]
  58. Han X H, Hua L, Zhuang Wet al. Process design and control in cold rotary forging of non-rotary gear parts[J]. Journal of Materials Processing Technology, 2014, 214(11): 2402–2416[Article] [CrossRef] [Google Scholar]
  59. Feng Chicheng. Research on technology and mechanism of rotary forging for components with cross ribs and thin webs[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese) [Google Scholar]
  60. Tian D, Han X, Hua L, et al. A novel process for axial closed extrusion of ring part with mesh-like ribs[J]. International Journal of Mechanical Sciences, 2020165: 105186[Article] [CrossRef] [Google Scholar]
  61. Qian D S, Li G, Deng Jet al. Effect of die structure on extrusion forming of thin-walled component with I-type longitudinal ribs[J]. International Journal of Advanced Manufacturing Technology, 2020, 108: 1959–1971[Article] [CrossRef] [Google Scholar]
  62. Cao Anzhai. The technology analysis and experimental research on round extrusion part with intra-cavity rib forming of aluminum alloy[D]. Taiyuan: North University of China, 2008 (in Chinese) [Google Scholar]
  63. LeiYudong, WangQiang, ZhangZhiminet al. Numerical simulation of crack initiation trends during rotating extrusion[J]. Journal of Plasticity Engineering, 2018, 25(2): 122–127[Article] (in Chinese) [Google Scholar]
  64. Wang Z G, Dong W Z, Yato H. A new forming method of flange on a drawn cup by plate forging[J]. Procedia Manufacturing, 2018, 15: 955–960[Article] [CrossRef] [Google Scholar]
  65. Alves L M, Gameiro J, Silva Cet al. Sheet-bulk forming of tubes for joining applications[J]. Journal of Materials Processing Technology, 2017 (240): 154–161 [CrossRef] [Google Scholar]
  66. Alves L M, Afonso R M, Silva Cet al. Boss forming of annular flanges in thin-walled tubes[J]. Journal of Materials Processing Technology, 2017 (250): 182–189 [CrossRef] [Google Scholar]
  67. Li Qianyun, Hu Yong, Wang Chenet al. Research of precise manufacturing technology for large thin wall panel with high ribs made of high strength aluminum alloy[J]. Astronautical Systems Engineering Technology, 20215(1): 19–26[Article] (in Chinese) [Google Scholar]
  68. QianD S, LiG, DengJet al. Effect of die structure on extrusion forming of thin-walled component with I-type longitudinal ribs[J]. International Journal of Advanced Manufacturing Technology, 2020108(9/10/11/12): 1–13 [CrossRef] [Google Scholar]
  69. Li Jizhen. “Made in China 2025” & Spinning technology[C]//Proceedings of the 14th National Spinning Technology Exchange Annual Conference of China, Huizhou, 2016 (in Chinese) [Google Scholar]
  70. DuKun, YangHe Research progress of multipass universal spin technology[J]. Mechanical Science and Technology, 2001 (4): 558–560[Article] (in Chinese) [Google Scholar]
  71. Mao Huajie, Liu Yapeng, Deng Jiadong Numerical simulation and process optimization of composite flow forming for thin-walled cylinder with longitudinal external ribs[J]. Forging & Stamping Technology, 202045(4): 93–99[Article] (in Chinese) [Google Scholar]
  72. Xu W, Zhao X, Shan Det al. Numerical simulation and experimental study on multi-pass stagger spinning of internally toothed gear using plate blank[J]. Journal of Materials Processing Technology, 2016, 229: 450–466[Article] [CrossRef] [Google Scholar]
  73. Ma F, Yang H, Zhan M. Research on distribution of stress and strain field in power spinning process of parts with transverse rib[C]//The Fifth International Conference on Physical & Numerical Simulation of Materials Processing, 2007 [Google Scholar]
  74. Ma F, Yang H, Zhan M. Research on the metal flow in power spinning process of parts with transverse inner rib[C]//The 8th International Conference on Frontiers of Design and Manufacturing, Tianjin, 2008 [Google Scholar]
  75. ZengX, FanX G, LiH Wet al. Die filling mechanism in flow forming of thin-walled tubular parts with cross inner ribs[J]. Journal of Manufacturing Processes, 202058832–844[Article] [CrossRef] [Google Scholar]
  76. Lyu W, Zhan M, Gao P F, et al. Improvement of rib-grid structure of thin-walled tube with helical grid-stiffened ribs based on the multi-mode filling behaviors in flow forming[J]. Journal of Materials Processing Technology, 2021, 296: 117167[Article] [CrossRef] [Google Scholar]
  77. Zhu Baoxing. Study on flow forming process of thin-walled cylindrical parts with grid inner ribs[D]. Shanghai: Shanghai Jiaotong University, 2019 (in Chinese) [Google Scholar]
  78. 樊晓光, 姚毅, 詹梅. 一种环形外筋筒形件剪切成形方法[P]. CN202111514518.3, 2021 [Google Scholar]
  79. Han X H, Hua L, Peng Let al. An innovative radial envelope forming method for manufacturing thin-walled cylindrical ring with inner web ribs[J]. Journal of Materials Processing Technology, 2020 ,286: 116836[Article] [CrossRef] [Google Scholar]
  80. Peng Lu. Research on envelope forming method for thin-walled cylindrical components with high rib[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.