Open Access
Issue
JNWPU
Volume 40, Number 2, April 2022
Page(s) 253 - 260
DOI https://doi.org/10.1051/jnwpu/20224020253
Published online 03 June 2022
  1. Zhu Zheng, Zhao Qijun, Li Peng. Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 568–578(in Chinese) [Google Scholar]
  2. LuCongling, ShiYongjie, Xu Guohua, et al. Research on aerodynamic interaction mechanism of rigid coaxial rotor in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 201–207 [Article] [Google Scholar]
  3. Zhang Zhenyu, Qian Yaoru, Wang Tongguang. Analysis on flow-field around helicopter rigid rotor blades based on unsteady RANS equations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 238–243[Article](in Chinese) [Google Scholar]
  4. Hariharan N S, Egolf T A, Sankar L N. Simulation of rotor in hover: current state, challenges and standardized evaluation[C]//52nd AIAA Aerospace Sciences Meeting, 2014 [Google Scholar]
  5. Hariharan N S, Narducci R P, Reed E, et al. AIAA standardized hover simulation: hover performance prediction status and outstanding issues[C]//55th AIAA Aerospace Sciences Meeting, 2017 [Google Scholar]
  6. Parwani A, Coder J G. Effect of laminar-turbulent transition modeling on PSP rotor hover predictions[C]//56th AIAA Aerospace Sciences Meeting, 2018 [Google Scholar]
  7. Singh R, Corle E, Jain R, et al. Computation and quantification of uncertainty in predictions of HVAB rotor performance in hover[C]//AIAA Scitech 2019 Forum, 2019 [Google Scholar]
  8. Jain R. >Sensitivity study of high-fidelity hover predictions on the sikorsky S-76 rotor[J]. Journal of Aircraft, 2017, 55(1): 1–11 [NASA ADS] [Google Scholar]
  9. Jain R. A comparison of CFD hover predictions for the sikorsky S-76 rotor[C]//54th AIAA Aerospace Sciences Meeting, 2016 [Google Scholar]
  10. Weiss A, Gardner A D, Schwermer T, et al. On the effect of rotational forces on rotor blade boundary-layer transition[J]. AIAA Journal, 2019, 57(1): 252–266 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  11. Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178 [Google Scholar]
  12. Du Yiming. Research on modification of RANS eddy-viscosity turbulence model and prediction method of three-dimensional boundary-layer transition[D]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese) [Google Scholar]
  13. Pang Chao, Gao Zhenghong, Yang Hua, , et al. An efficient grid assembling method in unsteady dynamic motion simulation using overset grid[J]. Aerospace Science and Technology, 2020(110): 106450 [Google Scholar]
  14. Pang Chao, Gao Zhenghong. CFD simulation of unsteady interaction between rotor and fuselage for canard rotor wing in hovering using overset grids[C]//9th Asia Conference on Mechanical and Aerospace Engineering, 2018 [Google Scholar]
  15. Pang Chao, Gao Zhenghong. Numerical investigation of aerodynamic performance for a canard rotor wing aircraft in late conversion mode[C]//Asia Pacific International Symposium on Aerospace Technology, Engineers, Australia, 2019 [Google Scholar]
  16. Pang Chao, Yang Hua, Gao Zhenghong, et al. Enhanced adaptive mesh refinement method using advanced vortex identification sensors in wake flow[J]. Aerospace Science and Technology, 2021(115): 106796 [CrossRef] [Google Scholar]
  17. Du Yiming, Pang Chao, Shu Bowen, et al. Numerical simulation of the standard model CHN-T1 based on overset grid[J]. Acta Aerodynamica Sinica, 2019, 37(2): 280–290 [Article] (in Chinese) [Google Scholar]
  18. Medida S, Baeder J. Application of the correlation-based γ-Reθt transition model to the spalart-allmaras turbulence model[C]//20th AIAA Computational Fluid Dynamics Conference, 2011 [Google Scholar]
  19. Shivaji M. Correlation-based transition modeling for external aerodynamic flows[D]. Maryland: University of Maryland College Park, 2014 [Google Scholar]
  20. Schubauer G B, Klebanoff P S. Contributions on the mechanics of boundary-layer transition[R]. NACA-TR-1289, 1955 [Google Scholar]
  21. Savill A M. Some recent progress in the turbulence modelling of bypass transition//Near-Wall Turbulent Flows[M]. Netherlands: Elsevier, 1993: 829–848 [Google Scholar]
  22. Savill A M. Evaluating turbulence model predictions of transition//Advances in Turbulence IV[M]. Dordrecht: Springer, 1993, 555–562 [Google Scholar]
  23. Somers D M. Design and experimental results for the S809 airfoil[R]. NREL/SR-440-6918, 1997 [Google Scholar]
  24. Overmeyer A D, Martin P B. Measured boundary layer transition and rotor hover performance at model scale[C]//55th AIAA Aerospace Sciences Meeting, 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.