Open Access
Volume 40, Number 2, April 2022
Page(s) 352 - 359
Published online 03 June 2022
  1. LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1) : 10–25. [Article] [CrossRef] [Google Scholar]
  2. GRAHAMN W R, HALL C A, MORALES M V. The potential of future aircraft technology for noise and pollutant emissions reduction[J]. Transport Policy, 2014, 34(1) : 36–51. [Article] [CrossRef] [Google Scholar]
  3. CHEN Z L, ZHANG M H, CHEN Y C, et al. Assessment on critical technologies for conceptual design of blended wing body civil aircraft[J]. Chinese Journal of Aeronautics, 2019, 32(8) : 1797–1827. [Article] [CrossRef] [Google Scholar]
  4. OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82 : 1–23. [Article] [CrossRef] [Google Scholar]
  5. WANG Gang, ZHANG Binqian, ZHANG Minghui, et al. Study on the conceptual and aerodynamic design of blended wing body civil aircraft: progress and prospects[J]. Acta Aeronautics et Astronautics Sinica, 2019, 40(9) : 7–35 [Article] (in Chinese) [Google Scholar]
  6. KAWAI R T. Acoustic prediction methodology and test validation for an efficient low-noise hybrid wing body subsonic transport[R]. NF1676L-14465, 2011 [Google Scholar]
  7. FLAMM J D, JAMES K D, BONET J T. Overview of ERA integrated technology demonstration(ITD) 51A ultra-high bypass(UHB) integration for hybrid wing body(HWB)[C]//54th AIAA Aerospace Science Meeting, Reston, 2016 [Google Scholar]
  8. ROSSOW C C, GORDARD J L, HOHEISEL H, et al. Investigations of propulsion integration interference effects on a transport aircraft configuration[J]. Journal of Aircraft, 1994, 31(5) : 1022–1030. [Article] [CrossRef] [Google Scholar]
  9. DIETZ G, MAI H, SCHRODER A, et al. Unsteady wing-pylon-nacelle interference in transonic flow[J]. Journal of Aircraft, 2008, 45(3) : 934–944. [Article] [CrossRef] [Google Scholar]
  10. SHEN Qiong, YU Xiongqing, ZHAN Lan. Integrated optimization for wing shape and nacelle locations of transports[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1) : 30–35. [Article] (in Chinese) [Google Scholar]
  11. OLIVEIRA G L, TRAPP L G, MACEDO A P. Integration methodology for regional jet aircraft with under-wing engines[C]//41st AIAA Aerospace Science Meeting and Exhibit, Reston, 2003 [Google Scholar]
  12. SOUZA A M, NETO A D. Parametric analysis of different nacelle positions in the DLR-F6 model by means of the CFD++ Code[C]//26th AIAA Applied Aerodynamics Conference, Reston, 2008 [Google Scholar]
  13. BONET J T, SCHELLENGER H G, RAWDON B K, et al. Environmentally responsible aviation(ERA) project N+2 advanced vehicle concepts study and conceptual design of subscale test vehicle(STV)[R]. NASA CR-2011-216519, 2011 [Google Scholar]
  14. THOMAS R H, BURLEY C L, NICKOL C L. Assessment of the noise reduction potential of advanced subsonic transport concepts for the NASA environmentally responsible aviation project[C]//54th AIAA Aerospace Science Meeting, Reston, 2016 [Google Scholar]
  15. STAÑKOWSKI T P, MACMANUS D G, SHEAF C T, et al. Aerodynamic interference for aero-engine installations[C]//54th AIAA Aerospace Science Meeting, Reston, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.