Open Access
Volume 40, Number 3, June 2022
Page(s) 661 - 669
Published online 19 September 2022
  1. AONO H, NONOMURA T, ANYOJI M, et al. A numerical study of the effects of airfoil shape on low Reynolds number aerodynamics[C]//Proceedings of the Eighth International Conference on Engineering Computational Technology, Dubrovnik Croatia, 2012 [Google Scholar]
  2. ANYOJI M, NONOMURA T, AONO H, et al. Computational and experimental analysis of a high-performance airfoil under low-Reynolds-number flow condition[J]. Journal of Aircraft, 2014, 51(6): 1864–1872. [Article] [CrossRef] [Google Scholar]
  3. JI Bin, CHENG Huaiyu, HUANG Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 428–479. [Article] (in Chinese) [Google Scholar]
  4. MITTAL R, DONG H, BOZKURTTAS M. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries[J]. Journal of Computational Physics, 2008, 227(10): 4825–4852. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  5. ZHANG Chi, ZHANG Yuxin, WAN Decheng. Comparative study of SPH and MPS methods for numerical simulations of dam breaking problems[J]. Chinese Journal of Hydrodynamics, 2011, 26(6): 736–746. [Article] (in Chinese) [Google Scholar]
  6. LIU M B, LIU G R. Smoothed particle hydrodynamics(SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17: 25–76. [Article] [CrossRef] [Google Scholar]
  7. YANG Qiuzu, XU Fei, WANG Lu, et al. An improved SPH algorithm for large density ratios multiphase flows based on riemann solution[J]. Chinese Journal of Theoretical and Applied, 2019, 51(3): 730–742. [Article] (in Chinese) [Google Scholar]
  8. ZHANG Yunyun, REN Liqun, BO Fuping, et al. SPH method-based numerical simulation of steep-slope hydraulic jump in stilling pool[J]. Water Resources and Hydropower Engineering, 2019, 551(9): 130–136. [Article] (in Chinese) [Google Scholar]
  9. ZHENG Wengang, WANG Yuan, ZHANG Yunyun, et al. SPH method-based study on energy dissipation characteristics of stepped spillway[J]. Water Resources and Hydropower Engineering, 2020, 51(12): 8. [Article] (in Chinese) [Google Scholar]
  10. SUN P N, MING F R, ZHANG A M, et al. Viscous flow past a NACA0012 foil below a free surface through the delta-plus-SPH method[J]. International Journal of Computational Methods, 2018, 16(2): 1846007 [Google Scholar]
  11. HUANG Xiaoting, SUN Pengnan, LYU Hongguan, et al. Numerical investigations on bionic propulsion problems using the multi-resolution delta-plus SPH model[J]. European Journal of Mechanics-B/Fluids, 2022, 915: 106–121 [NASA ADS] [CrossRef] [Google Scholar]
  12. SHADLOO M S, ZAINALI A, YILDIZ M, et al. A robust weakly compressible SPH method and its comparison with an incompressible SPH[J]. International Journal for Numerical Methods in Engineering, 2012, 89(8): 939–956 [CrossRef] [Google Scholar]
  13. HUANG C, LONG T, LI S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils[J]. Engineering Analysis with Boundary Elements, 2019, 106: 571–587. [Article] [CrossRef] [Google Scholar]
  14. ANTUONO M, COLAGROSSI A, MARRONE S. Numerical diffusive terms in weakly-compressible SPH schemes[J]. Computer Physics Communications, 2012, 183(12): 2570–2580. [Article] [CrossRef] [Google Scholar]
  15. SUN P N, COLAGROSSI A, MARRONE S, et al. Multi-resolution delta-plus-SPH with tensile instability control: towards high reynolds number flows[J]. Computer Physics Communications, 2018, 224: 63–80. [Article] [CrossRef] [Google Scholar]
  16. WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1): 389–396. [Article] [Google Scholar]
  17. LIND S J, XU R, STANSBY P K, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[J]. Journal of Computational Physics, 2012, 231(4): 1499–1523. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. MARRONE S, COLAGROSSI A, ANTUONO M, et al. An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers[J]. Journal of Computational Physics, 2013, 245: 456–475. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  19. GEORGE Haller. Langrangian coherent structures[J]. Annual Review of Fluid Mechanics, 2015, 47(1): 137–162. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  20. SUN P N, COLAGROSSI A, MARRONE S, et al. Detection of Lagrangian coherent structures in the SPH framework[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 305(15): 849–868 [CrossRef] [Google Scholar]
  21. CHIRON L, OGER G, DELEFFE M, et al. Analysis and improvements of adaptive particle refinement(APR) through CPU time, accuracy and robustness considerations[J]. Journal of Computational Physics, 2018, 354: 552–575. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  22. BOUARD R, COUTANCEAU M. The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104[J]. Journal of Fluid Mechanics, 1980, 101(3): 583–607. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  23. OHTAKE Tomohisa, TAGAI Rie, KANDA Shou, et al. Flow field phenomena on Ishii airfoil at low Reynolds numbers[C]//45th Fluid Dynamics Conference/Aerospace Numerical Simulation Symposium, 2013, Tokyo [Google Scholar]
  24. LEE D, NONOMURA T, OYAMA A, et al. Comparative studies of numerical methods for evaluating aerodynamic characteristics of two-dimensional airfoil at low Reynolds numbers[J]. International Journal of Computational Fluid Dynamics, 2017, 31(1): 57–67. [Article] [CrossRef] [Google Scholar]
  25. SCHNIPPER T, ANDERSEN A, BOHR T. Vortex wakes of a flapping foil[J]. Journal of Fluid Mechanics, 2009, 633: 411–423. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.