Open Access
Issue
JNWPU
Volume 40, Number 3, June 2022
Page(s) 651 - 660
DOI https://doi.org/10.1051/jnwpu/20224030651
Published online 19 September 2022
  1. HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448–464 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. PHILIPPIDIS T P, VASSILOPOULOS A P. Fatigue strength prediction under multiaxial stress[J]. Journal of Composite Materials, 1999, 33(17): 1578–1599. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  3. ELLYIN F, EL-KADI H. A fatigue failure criterion for fiber reinforced composite laminae[J]. Composite Structures, 1990, 15(1): 61–74. [Article] [CrossRef] [Google Scholar]
  4. BROUTMAN L J, SAHU S. A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics[J]. ASTM STP, 1972, 497: 170–188 [Google Scholar]
  5. SCHAFF J R, DAVIDSON B D. Life prediction methodology for composite structures. Part Ⅰ-constant amplitude and two-stress level fatigue[J]. Journal of Composite Materials, 1997, 31(2): 128–157. [Article] [CrossRef] [Google Scholar]
  6. YAO W, HIMMEL N. Statistical analysis of data from truncated fatigue life and corresponding residual strength experiments for polymer matrix composites[J]. International Journal of Fatigue, 1999, 21(6): 581–585. [Article] [CrossRef] [Google Scholar]
  7. YAO W, HIMMEL N. A new cumulative fatigue damage model for fibre-reinforced plastics[J]. Composites Science and Technology, 2000, 60(1): 59–64. [Article] [CrossRef] [Google Scholar]
  8. STOJKOVIC N, FOLI R, PASTERNAK H. Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue[J]. International Journal of Fatigue, 2017, 103: 478–487. [Article] [CrossRef] [Google Scholar]
  9. PHILIPPIDIS T P, VASSILOPOULOS A P. Fatigue of composite laminates under off-axis loading[J]. International Journal of Fatigue, 1999, 21(3): 253–262. [Article] [CrossRef] [Google Scholar]
  10. LIU H, ZHANG Z, JIA H, et al. A modified composite fatigue damage model considering stiffness evolution for wind turbine blades[J]. Composite Structures, 2020, 233: 111736. [Article] [CrossRef] [Google Scholar]
  11. SHOKRIEH M M, LESSARD L B. Progressive fatigue damage modeling of composite materials. Part Ⅰ: modeling[J]. Journal of Composite Materials, 2000, 34(13): 1056–1080. [Article] [CrossRef] [Google Scholar]
  12. NOLL T, MAGIN M, HIMMEL N. Fatigue life simulation of multi-axial CFRP laminates considering material non-linearity[J]. International Journal of Fatigue, 2010, 32(1): 146–157. [Article] [CrossRef] [Google Scholar]
  13. WANG Danyong. Research on prediction of damage failure and fatigue life for composite bolted joints[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese) [Google Scholar]
  14. LIAN W, YAO W. Fatigue life prediction of composite laminates by FEA simulation method[J]. International Journal of Fatigue, 2010, 32(1): 123–133. [Article] [CrossRef] [Google Scholar]
  15. NADERI M, MALIGNO A R. Fatigue life prediction of carbon/epoxy laminates by stochastic numerical simulation[J]. Composite Structures, 2012, 94(3): 1052–1059. [Article] [CrossRef] [Google Scholar]
  16. ZHOU Yinhua. A study of nonlinear models of composites and its applications to composite multi-bolt joints[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese) [Google Scholar]
  17. ZHANG Wenjiao. Fatigue damage modelling and analysis for fiber reinforced composite materials[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese) [Google Scholar]
  18. LIU Jianming, WAN Xiaopeng, ZHAO Meiying. Fatigue life prediction of laminated bolted joint structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1867–1875. [Article] (in Chinese) [Google Scholar]
  19. ZHAO L, SHAN M, HONG H, et al. A residual strain model for progressive fatigue damage analysis of composite structures[J]. Composite Structures, 2017, 169: 69–78. [Article] [CrossRef] [Google Scholar]
  20. ZHANG Y, ZHANG L, GUO L, et al. Investigation on fatigue performance of T800 composites structural component[J]. Composite Structures, 2018, 195: 26–35. [Article] [CrossRef] [Google Scholar]
  21. TUO H, LU Z, MA X, et al. An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates[J]. Composites Part B: Engineering, 2019, 167: 329–341. [Article] [CrossRef] [Google Scholar]
  22. PUCK A, MANNIGEL M. Physically based non-linear stress-strain relations for the inter-fibre fracture analysis of FRP laminates[J]. Composites Science and Technology, 2007, 67(9): 1955–1964. [Article] [CrossRef] [Google Scholar]
  23. SCHIRMAIER F J, WEILAND J, KRGER L, et al. A new efficient and reliable algorithm to determine the fracture angle for Puck's 3D matrix failure criterion for UD composites[J]. Composites Science and Technology, 2014, 100: 19–25. [Article] [CrossRef] [Google Scholar]
  24. SHOKRIEH M M, LESSARD L B. Progressive fatigue damage modeling of composite materials. Part Ⅱ: material characterization and model verification[J]. Journal of Composite Materials, 2000, 34(13): 1081–1116. [Article] [CrossRef] [Google Scholar]
  25. ADAM T, FERNANDO G, DICKSON R F, et al. Fatigue life prediction for hybrid composites[J]. International Journal of Fatigue, 1989, 11(4): 233–237. [Article] [CrossRef] [Google Scholar]
  26. GATHERCOLE N, REITER H, ADAM T, et al. Life prediction for fatigue of T800/5245 carbon-fibre composites. I: constant-amplitude loading[J]. International Journal of Fatigue, 1994, 16(8): 523–532. [Article] [CrossRef] [Google Scholar]
  27. SHOKRIEH M M, LESSARD L B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments-I. modelling[J]. International Journal of Fatigue, 1997, 19(3): 201–207. [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.