Open Access
Volume 40, Number 4, August 2022
Page(s) 778 - 786
Published online 30 September 2022
  1. ZHANG Xiaowei. Distributed electric propulsion technology oriented to 2030[C]//The 2nd China Aeronautical Science and Technology Conference, Beijing, 2015: 330-334 (in Chinese) [Google Scholar]
  2. HUANG Jun, YANG Fengtian. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 37(1): 57–68 [Article] (in Chinese) [Google Scholar]
  3. QIAO Weiyang. Aero-engine aeroacoustics[M]. Beijing: Beihang University Press, 2010 (in Chinese) [Google Scholar]
  4. XIN Gongzheng, DING Enbao, TANG Denghai. A design method for contra-rotating propeller by lifting-surface method[J]. Journal of Ship Mechanics, 2006, 10(2): 40–46 [Article] (in Chinese) [Google Scholar]
  5. LIU Xiaolong, TANG Denghai, HOU Ying. Prediction of steady performance of contra-rotating propellers by potential based panel method[J]. Shipbuilding of China, 2009, 50(3): 1–8 [Article] (in Chinese) [Google Scholar]
  6. KINNAS S. A nonlinear boundary element method for the analysis of unsteady propeller sheet cavitation[C]//Nineteenth Symposium on Naval Hydrodynamics, Seoul, Korea, 1992: 717-737 [Google Scholar]
  7. BALTAZAR J, CAMPOS J A C F D, BOSSCHERS J. Open-water thrust and torque predictions of a ducted propeller system with a panel method[J]. International Journal of Rotating Machinery, 2012(1): 474785 [Google Scholar]
  8. LEONARD A. Vortex methods for flow simulation[J]. Journal of Computational Physics, 1980, 37(3): 289–335 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. ANDERSON C, GREENGARD C. On vortex methods[J]. SIAM Journal on Numerical Analysis, 1985, 22(3): 413–440 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. TAN Jianfeng, WANG Haowen, WU Chao, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 643–656 [Article] (in Chinese) [Google Scholar]
  11. WILLIS D J, PERAIRE J, WHITE J K. A combined pFFT-multipole tree code, unsteady panel method with vortex particle wakes[J]. International Journal for Numerical Methods in Fluids, 2010, 53(8): 1399–1422 [Google Scholar]
  12. HU Hao, SONG Xiaoyong, GU Bo, et al. Aerodynamic calculation of wind turbine wheel based on hybrid panel viscous-vortex particle method[J]. Journal of Aerospace Power, 2015, 30(6): 1432–1439 [Article] (in Chinese) [Google Scholar]
  13. ZOU Ruhong, ZHANG Junyan, SUN Qin, et al. Inverse design for wind turbine airfoil based on panel method[J]. Engineering Mechanics, 2014, 31(11): 198–203 [Article] (in Chinese) [Google Scholar]
  14. BARBA L A. Vortex method for computing high-Reynolds number flows: increased accuracy with a fully mesh-less formulation[D]. Pasadena: California Institute of Technology, 2004 [Google Scholar]
  15. FENG Jianhu, NIE Yufeng, WANG Zhenhai. Numerical analysis[M]. Xi’an: Northwestern Polytechnical University Press, 2006 (in Chinese) [Google Scholar]
  16. PLOUMHANS P, WINCKELMANS G S, SALMON J K, et al. Vortex methods for direct numerical simulation of three-dimensional buff body flows: application to the sphere at Re=300, 500, and 1 000[J]. Journal of Computational Physics, 2002, 178(2): 427–463 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. LOWSON M. Theoretical studies of compressor noise[M]. Washington: National Aeronautics and Space Administration, 1969 [Google Scholar]
  18. KHELLADI S, KOUIDRI S, BAKIR F, et al. Predicting tonal noise from a high rotational speed centrifugal fan[J]. Journal of Sound and Vibration, 2008, 313(1): 113–133 [NASA ADS] [CrossRef] [Google Scholar]
  19. ZHAO Yinyu. Research on helicopter rotor blade-vortexinteraction noise based on coupling CFD/viscous vortex particle method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese) [Google Scholar]
  20. DOU Fengxiang. Research on prediction for propeller non-cavitating noise[D]. Harbin: Harbin Engineering University, 2013 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.