Open Access
Volume 40, Number 4, August 2022
Page(s) 787 - 795
Published online 30 September 2022
  1. GATES W R, MCCARTHY M J. United states marine corps aerial refueling requirements analysis[C]//Proceedings of the 2000 Winter Simulation Conference Proceedings, 2000 [Google Scholar]
  2. KIMMETT J, VALASEK J, JUNKINS J L. Vision based controller for autonomous aerial refueling[C]//Proceedings of the International Conference on Control Applications, 2002 [Google Scholar]
  3. WU C, YAN J, HE S, et al. Efficient power design of multi-core DSP TMS320C6678 applied in autonomous aerial refueling system[C]//Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference, 2018 [Google Scholar]
  4. POLLINI L, CAMPA G, GIULIETTI F, et al. Virtual simulation set-up for UAVS aerial refuelling[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit, 2003 [Google Scholar]
  5. QUAN Quan, WEI Zibo, GAO Jun, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2390–2410 [Article] (in Chinese) [Google Scholar]
  6. LIU Z, LIU J, HE W. Dynamic modeling and vibration control of a flexible aerial refueling hose[J]. Aerospace Science and Technology, 2016, 55: 92–102 [Article] [CrossRef] [Google Scholar]
  7. SALEHI PANIAGUA K, GARCÍA-FOGEDA P, ARÉVALO F, et al. Aeroelastic analysis of an air-to-air refueling hose-drogue system through an efficient novel mathematical model[J]. Journal of Fluids and Structures, 2021, 100: 103164[Article] [CrossRef] [Google Scholar]
  8. DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 [Google Scholar]
  9. LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110 [Article] [CrossRef] [Google Scholar]
  10. MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1988, 5: 115–133 [Google Scholar]
  11. KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012 [Google Scholar]
  12. CHEN A, XIE Y, WANG Y, et al. Knowledge graph-based image recognition transfer learning method for on-orbit service manipulation[J]. Space: Science and Technology, 2021(1): 165–172 [Google Scholar]
  13. GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014 [Google Scholar]
  14. GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015 [Google Scholar]
  15. REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016 [Google Scholar]
  16. LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, Cham, 2016 [Google Scholar]
  17. REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//IEEE Conferenlg on Lomputer Vision and Pattern Relognition, 2018 [Google Scholar]
  18. WANG R, LIANG C, PAN D, et al. Research on a visual servo method of a manipulator based on velocity feedforward[J], Space: Science & Technology, 2021(1): 119–126 [Google Scholar]
  19. LI Zhu. Binocular-vision-based docking navigation method for UAV self-refueling[D]. Xiamen: Xiamen University, 2017 (in Chinese) [Google Scholar]
  20. XU X, DUAN H, GUO Y, et al. A cascade adaboost and CNN algorithm for drogue detection in UAV autonomous aerial refueling[J]. Neurocomputing, 2020, 408: 121–134 [Article] [CrossRef] [Google Scholar]
  21. ARTHUR D, VASSILVITSKⅡ S. k-means++: the advantages of careful seeding[C]//Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 2007 [Google Scholar]
  22. REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019 [Google Scholar]
  23. SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceeding of the Conference on Computer Vision and Pattern Recognition, 2016 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.