Open Access
Volume 40, Number 4, August 2022
Page(s) 804 - 811
Published online 30 September 2022
  1. KONG P, LI L, GAO J, et al. Automated testing of Android apps: a systematic literature review[J]. IEEE Trans on Reliability, 2018, 68(1): 45–66 [Google Scholar]
  2. TRAMONTANA P, AMALFITANO D, AMATUCCI N, et al. Automated functional testing of mobile applications: a systematic mapping study[J]. Software Quality Journal, 2019, 27(1): 149–201 [Article] [CrossRef] [Google Scholar]
  3. LINARES-VÁSQUEZ M, BERNAL-CÁRDENAS C, MORAN K, et al. How do developers test android applications?[C]//2017 IEEE International Conference on Software Maintenance and Evolution, 2017: 613-622 [Google Scholar]
  4. RUBINOV K, BARESI L. What are we missing when testing our android apps?[J]. Computer, 2018, 51(4): 60–68 [Article] [Google Scholar]
  5. Appium-automation for apps[EB/OL]. (2018-10-05)[2021-08-18]. [Google Scholar]
  6. Eyeautomate-visual script runner[EB/OL]. (2019-02-08)[2021-08-12]. [Google Scholar]
  7. AMALFITANO D, RICCIO V, AMATUCCI N, et al. Combining automated GUI exploration of android apps with capture and replay through machine learning[J]. Information and Software Technology, 2019, 105:95–116 [Article] [CrossRef] [Google Scholar]
  8. GUO J, LI S, LOU J G, et al. SARA: self-replay augmented record and replay for android in industrial cases[C]//Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2019: 90-100 [Google Scholar]
  9. GU T, SUN C, MA X, et al. Practical GUI testing of Android applications via model abstraction and refinement[C]//2019 IEEE/ACM 41st International Conference on Software Engineering, 2019: 269-280 [Google Scholar]
  10. SALIHU I A, IBRAHIM R, AHMED B S, et al. AMOGA: a static-dynamic model generation strategy for mobile apps testing[J]. IEEE Access, 2019, 7: 17158–17173 [Article] [CrossRef] [Google Scholar]
  11. BEHRANG F, ORSO A. Test migration between mobile apps with similar functionality[C]//2019 34th IEEE/ACM International Conference on Automated Software Engineering, 2019: 54-65 [Google Scholar]
  12. PAN M, XU T, PEI Y, et al. GUI-guided test script repair for mobile apps[J]. IEEE Trans on Software Engineering, 2022, 48(3): 910–929 [Google Scholar]
  13. CRACIUNESCU M, MOCANU S, DOBRE C, et al. Robot based automated testing procedure dedicated to mobile devices[C]//2018 25th International Conference on Systems, Signals and Image Processing, 2018: 1-4 [Google Scholar]
  14. MAO K, HARMAN M, JIA Y. Robotic testing of mobile APPS for truly black-box automation[J]. IEEE Software, 2017, 34(2): 11–16 [Article] [CrossRef] [Google Scholar]
  15. BANERJEE D, YU K. Robotic arm-based face recognition software test automation[J]. IEEE Access, 2018, 6: 37858–37868 [Article] [CrossRef] [Google Scholar]
  16. NASS M, ALÉGROTH E, FELDT R. Why many challenges with GUI test automation(will) remain[J]. Information and Software Technology, 2021, 138: 106625[Article] [CrossRef] [Google Scholar]
  17. DEKA B, HUANG Z, FRANZEN C, et al. RICO: a mobile app dataset for building data-driven design applications[C]//Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, 2017: 845-854 [Google Scholar]
  18. BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J/OL]. (2020-04-05)[2021-08-12]. [Google Scholar]
  19. LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, Cham, 2016: 21-37 [Google Scholar]
  20. LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988 [Google Scholar]
  21. CHEN C, SU T, MENG G, et al. From UI design image to GUI skeleton: a neural machine translator to bootstrap mobile GUI implementation[C]//Proceedings of the 40th International Conference on Software Engineering. 2018: 665-676 [Google Scholar]
  22. MORAN K, BERNAL-CÁRDENAS C, CURCIO M, et al. Machine learning-based prototyping of graphical user interfaces for mobile apps[J]. IEEE Trans on Software Engineering, 2018, 46(2): 196–221 [Google Scholar]
  23. MASCI J, MEIER U, CIRESAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]//International Conference on Artificial Neural Networks, Berlin, Heidelberg, 2011: 52-59 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.