Open Access
Volume 40, Number 4, August 2022
Page(s) 837 - 844
Published online 30 September 2022
  1. LIGHTHILL M J. A new method of two-dimensional aerodynamics design[R]. R & M, No. 2112, 1945 [Google Scholar]
  2. TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft, 1985, 22(8): 655–660. [Article] [CrossRef] [Google Scholar]
  3. ZHAN Hao, HUA Jun, ZHANG Zhongyin. Design of multi-lifting surfaces based on iterative residual correction[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 411–413. [Article] (in Chinese) [Google Scholar]
  4. LI Jiaozan. Study on inverse design method of airfoil based on optimization of target pressure distribution[D]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese) [Google Scholar]
  5. BUI-THANH T, DAMODARAN M, WILLCOX K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition[J]. AIAA Journal, 2004, 42(8): 1501–1516 [Google Scholar]
  6. BAI Junqiang, QIU Yasong, HUA Jun. Improved airfoil inverse design method based on Gappy POD[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 762–771. [Article] (in Chinese) [Google Scholar]
  7. SHAN Zhihui. Fast airfoil design based on Gaussian process regression[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese) [Google Scholar]
  8. SUN G, SUN Y, WANG S. Artificial neural network based inverse design: airfoils and wings[J]. Aerospace Science and Technology, 2015, 42: 415–428. [Article] [CrossRef] [Google Scholar]
  9. SEKAR V, ZHANG M, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal, 2019, 57(3): 993–1003. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. BISHOP C M, SVENSÉN M, WILLIAMS C K I. GTM: the generative topographic mapping[J]. Neural Computation, 1998, 10(1): 215–234. [Article] [CrossRef] [Google Scholar]
  11. KANEKO H. Data visualization, regression, applicability domains and inverse analysis based on generative topographic mapping[J]. Molecular Informatics, 2019, 38(3): 1800088. [Article] [CrossRef] [Google Scholar]
  12. KANEKO H. Sparse generative topographic mapping for both data visualization and clustering[J]. Journal of Chemical Information and Modeling, 2018, 58(12): 2528–2535. [Article] [CrossRef] [Google Scholar]
  13. LIN A. Generative topographic mapping: a powerful tool for big chemical data visualization, analysis and modeling[D]. Strasbourg: Université de Strasbourg, 2019 [Google Scholar]
  14. VISWANATH A, FORRESTER A, KEANE A J. Dimension reduction for aerodynamic design optimization[J]. AIAA Journal, 2011, 49(6): 1256–1266. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  15. VISWANATH A, FORRESTER A, KEANE A J. Constrained design optimization using generative topographic mapping[J]. AIAA Journal, 2014, 52(5): 1010–1023. [Article] [CrossRef] [Google Scholar]
  16. VELLIDO A, MARTÍ E, COMAS J, et al. Exploring the ecological status of human altered streams through generative topographic mapping[J]. Environmental Modelling & Software, 2007, 22(7): 1053–1065 [CrossRef] [Google Scholar]
  17. ANDRADE A O, NASUTO S, KYBERD P, et al. Generative topographic mapping applied to clustering and visualization of motor unit action potentials[J]. Biosystems, 2005, 82(3): 273–284. [Article] [CrossRef] [Google Scholar]
  18. BISHOP C M. Neural networks for pattern recognition[M]. UK: Oxford University Press, 1995 [Google Scholar]
  19. KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142–158. [Article] [CrossRef] [Google Scholar]
  20. HUANG Jiangtao, ZHOU Zhu, LIU Gang, et al. Numerical study of aerostructural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121731. [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.