Open Access
Issue
JNWPU
Volume 40, Number 4, August 2022
Page(s) 892 - 900
DOI https://doi.org/10.1051/jnwpu/20224040892
Published online 30 September 2022
  1. LIU Jianhua, SUN Qingchao, CHENG Hui, et al. The state-of-the-art, connotation and developing trends of the products assembly technology[J]. Journal of Mechanical Engineering, 2018, 54(11): 2–28. [Article] (in Chinese) [CrossRef] [Google Scholar]
  2. DONG Tianyang. Approach to intelligent assembly planning and its related key technologies[D]. Hangzhou: Zhejiang University, 2005 (in Chinese) [Google Scholar]
  3. WANG Zenglei, YAN Yuxiang, HAN Dechuan, et al. Product blind area assembly method based on augmented reality and machine vision[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 496–502. 10.3969/j.issn.1000-2758.2019.03.009 [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  4. XU L D, WANG C, BI Z, et al. AutoAssem: an automated assembly planning system for complex products[J]. IEEE Trans on Industrial Informatics, 2012, 8(3): 669–678. [Article] [CrossRef] [Google Scholar]
  5. XU Zhijia, WANG Qinghui, LI Jingrong. Product modeling based on structure pre-mapping[J]. Journal of Mechanical Engineering, 2017, 53(19): 154–165. [Article] (in Chinese) [Google Scholar]
  6. XU Zhijia, WANG Qinghui, LI Jingrong. Modeling assembly design intent based on assembly feature pair[J]. Journal of Mechanical Engineering, 2018, 54(1): 214–222. [Article] (in Chinese) [Google Scholar]
  7. SINGH P, BETTIG B. Port-compatibility and connectability based assembly design[J]. Journal of Computing and Information Science in Engineering, 2004, 4(3): 197–205 [CrossRef] [Google Scholar]
  8. YANG Youdong. Process modeling and planning of top-down collaborative assembly design[D]. Hangzhou: Zhejiang University, 2008 (in Chinese) [Google Scholar]
  9. LIU Zhenyu. Research on the theory, method and application of process-and-history-oriented assembly modeling in virtual environment[D]. Hangzhou: Zhejiang University, 2002 (in Chinese) [Google Scholar]
  10. ZHANG Yingzhong, LUO Xiaofang, FAN Chao. Semantic representation for assembly design intent[J]. Computer Integrated Manufacturing Systems, 2011, 17(2): 248–255. [Article] (in Chinese) [Google Scholar]
  11. ROY U, BHARADWAJ B. Design with part behaviors: behavior model, representation and applications[J]. Computer-Aided Design, 2002, 34(9): 613–636 [Google Scholar]
  12. SHANG Y, HUANG K Z, ZHANG Q P. Genetic model for conceptual design of mechanical products based on functional surface[J]. International Journal of Advanced Manufacturing Technology, 2009, 42(3/4): 211–221 [CrossRef] [Google Scholar]
  13. ALBERS A, OHMER M, ECKERT C. Engineering design in a different way: cognitive perspective on the contact and channel model approach[C]//Proceedings of the Visual and Spatial Reasoning in Design, Cambridge, 2004 [Google Scholar]
  14. YI Guodong, TAN Jianrong, ZHANG Shuyou, et al. Assembly constraint modeling based on mating surface couple[J]. Journal of Zhejiang University, 2006, 40(6): 921–926. [Article] (in Chinese) [Google Scholar]
  15. SHAO Xiaodong, YIN Lei, LU Yuan, et al. Rapid assembling approach based on assembly features[J]. Computer Integrated Manufacturing Systems, 2007, 13(11): 2217–2223. [Article] (in Chinese) [Google Scholar]
  16. MA Y S, BRITTON G A, TOR S B, et al. Associative assembly design features: concept, implementation and application[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(5/6): 434–444 [CrossRef] [Google Scholar]
  17. LIANG Lifen. Research on assembly sequence planning based on adaptive chaotic particle swarm optimization algorithm[D]. Taiyuan: North University of China, 2016 (in Chinese) [Google Scholar]
  18. YANG Dongmei. Research on virtual assembly process planning and related techniques based on intelligence computing[D]. Harbin: Harbin Engineering University, 2010 (in Chinese) [Google Scholar]
  19. LI G D, ZHOU L S, AN L L, et al. A system for supporting rapid assembly modeling of mechanical products via components with typical assembly features[J]. International Journal of Advanced Manufacturing Technology, 2010, 46(5/6/7/8): 785–800 [CrossRef] [Google Scholar]
  20. WU Dianliang, YANG Rundang, MA Dengzhe, et al. Constraints navigation in integrated virtual assembly environment[J]. Journal of Mechanical Engineering, 2004, 40(11): 47–52. [Article] (in Chinese) [Google Scholar]
  21. SHEN Mei, HE Xiaochao, ZHANG Tiechang. Assembly feature recognition based on shape feature-based model[J]. Acta Aeronautica et Astronautica Sinica, 2000(6): 567–570. [Article] (in Chinese) [Google Scholar]
  22. YANG R D, FAN X M, WU D L, et al. Virtual assembly technologies based on constraint and DOF analysis[J]. Robotics & Computer Integrated Manufacturing, 2007, 23(4): 447–456 [CrossRef] [Google Scholar]
  23. XU Z, ZHANG J, LI Y, et al. Product modeling framework based on interaction feature pair[J]. Computer-Aided Design, 2013, 45(12): 1591–1603 [CrossRef] [Google Scholar]
  24. XU Z J, WANG P, WANG Q H, et al. Integrating part modeling and assembly modeling from the perspective of process[J]. Journal of Intelligent Manufacturing, 2019, 30(2): 855–878 [CrossRef] [Google Scholar]
  25. FreeCAD Manual[EB/OL]. (2020-04-20)[2021-09-01]. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.