Open Access
Issue
JNWPU
Volume 40, Number 4, August 2022
Page(s) 918 - 925
DOI https://doi.org/10.1051/jnwpu/20224040918
Published online 30 September 2022
  1. ZHANG L, HU X, WANG Z, et al. Hybrid electrochemical energy storage systems: an overview for smart grid and electrified vehicle applications[J]. Renewable and Sustainable Energy Reviews, 2020, 139: 110581 [Google Scholar]
  2. WANG Y, SUN Z, CHEN Z. Development of energy management system based on a rule-based power distribution strategy for hybrid power sources[J]. Energy, 2019, 175: 1055–1066 [CrossRef] [Google Scholar]
  3. DAO V H, DINH T X, TRUONG A, et al. Optimization-based fuzzy energy management strategy for pem fuel cell/battery/supercapacitor hybrid construction excavator[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8: 1267–1285. [Article] [CrossRef] [Google Scholar]
  4. MARZOUGUI H, KADRI A, MARTIN J P, et al. Implementation of energy management strategy of hybrid power source for electrical vehicle[J]. Energy Conversion & Management, 2019, 195: 830–843 [CrossRef] [Google Scholar]
  5. CHEN X P, HEWITT N, LI Z T, et al. Dynamic programming for optimal operation of a biofuel micro CHP-HES system[J]. Applied Energy, 2017, 208: 132–141. [Article] [CrossRef] [Google Scholar]
  6. YU S, LIN D, SUN Z, et al. Efficient model predictive control for real-time energy optimization of battery: supercapacitors in electric vehicles[J]. International Journal of Energy Research, 2020, 44(9): 7495–7506. [Article] [CrossRef] [Google Scholar]
  7. MESBAHI T, RIZOUG N, BARTHOLOMEVS P, et al. Optimal energy management for a Li-Ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating nelder-mead simplex approach[J]. IEEE Trans on Intelligent Vehicles, 2017, 2(2): 99–110 [Google Scholar]
  8. XU D, LIU J, YAN X G, et al. A novel adaptive neural network constrained control for multi-area interconnected power system with hybrid energy storage[J]. IEEE Trans on Industrial Electronics, 2018, 65(8): 6625–6634 [CrossRef] [Google Scholar]
  9. AHMADI S, BATHAEE S, HOSSEINPOUR A H. Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy[J]. Energy Conversion and Management, 2018, 160: 74–84. [Article] [CrossRef] [Google Scholar]
  10. LI X, WANG Y, YANG D, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using pontryagin's minimal principle[J]. Journal of Power Sources, 2019, 440: 227105. [Article] [CrossRef] [Google Scholar]
  11. ODEIM F, ROES J, HEINZEL A. Power management optimization of a fuel cell/battery/supercapacitor hybrid system for transit bus applications[J]. IEEE Trans on Vehicular Technology, 2016, 65(7): 5783–5788. [Article] [CrossRef] [Google Scholar]
  12. JIANG Q, BÉTHOUX O, OSSART F, et al. A comparison of real-time energy management strategies of FC/SC hybrid power source: statistical analysis using random cycles[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32192–32205. [Article] [CrossRef] [Google Scholar]
  13. EAST S, CANNON M. Optimal power allocation in battery/supercapacitor electric vehicles using convex optimization[J]. IEEE Trans on Vehicular Technology, 2020, 69(11): 12751–12762 [CrossRef] [Google Scholar]
  14. LI S, GU C, ZHAO P, et al. Adaptive energy management for hybrid power system considering fuel economy and battery longevity[J]. Energy Conversion and Management, 2021, 235: 114004. [Article] [CrossRef] [Google Scholar]
  15. SADEQ T, WAI C K, MORRIS E, et al. Optimal control strategy to maximize the performance of hybrid energy storage system for electric vehicle considering topography information[J]. IEEE Access, 2020, 8: 216994–217007. [Article] [CrossRef] [Google Scholar]
  16. WANG L, WANG Y, LIU C, et al. A power distribution strategy for hybrid energy storage system using adaptive model predictive control[J]. IEEE Trans on Power Electronics, 2020, 35(6): 5897–5906. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  17. ZHAI C, LUO F, LIU Y. A novel predictive energy management strategy for electric vehicles based on velocity prediction[J]. IEEE Trans on Vehicular Technology, 2020, 69(11): 12559–12569. [Article] [CrossRef] [Google Scholar]
  18. KAI Y K, RAJENDRAN P. Differential-evolution control parameter optimization for unmanned aerial vehicle path planning[J]. Plos One, 2016, 11(3): e0150558. [Article] [CrossRef] [Google Scholar]
  19. MORADI M H, ABEDINI M, TOUSI S, et al. Optimal siting and sizing of renewable energy sources and charging stations simultaneously based on differential evolution algorithm[J]. International Journal of Electrical Power & Energy Systems, 2015, 73: 1015–1024 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.