Open Access
Volume 40, Number 6, December 2022
Page(s) 1278 - 1287
Published online 10 February 2023
  1. WANG Qi, CHEN Hang, WANG Yingmin, et al. Robust matched field localization algorithm based on least squares in shallow water[J]. Journal of Northwestern Polytechnical University, 2017, 35(3): 480–485 [Article][Article] (in Chinese) [Google Scholar]
  2. MICHALOPOULOU Z H, POLE A, ABDI A. Bayesian coherent and incoherent matched-field localization and detection in the ocean[J]. The Journal of the Acoustical Society of America, 2019, 146(6): 4812–4820 [Article] [Google Scholar]
  3. LI Yongfei, ZHAO Hangfang. A time-frequency matched field location method in the presence of internal waves[J]. Journal of Harbin Engineering University, 2020, 41(10): 1605–1610 [Article] (in Chinese) [Google Scholar]
  4. BO Liankun, XIONG Jinyu, ZHANG Xiaoyong, et al. Bayesian geoacoustic inversion of self-noise in shallow water[J]. Acta Acustica, 2019, 44(6): 1017–1026 [Article] (in Chinese) [Google Scholar]
  5. GODIN O A. On sound propagation in a nonstationary ocean[J]. Doklady Physics, 2002, 47(9): 639–642 [Article] [CrossRef] [Google Scholar]
  6. LI Xiaoman, PIAO Shengchun, ZHANG Minghui, et al. A passive range method of underwater source based on single hydrophone[J]. Acta Physica Sinica, 2017, 66(18): 114–127 [Article] (in Chinese) [Google Scholar]
  7. XIE Liang, WANG Lujun, LIN Wangsheng. Localization of underwater sound source using the characteristics of pulse cluster signal arrivals in deep sea[J]. Acta Acustica, 2021, 46(2): 171–181 [Article] (in Chinese) [Google Scholar]
  8. ZHANG T, HAN G, GUIZANI M, et al. Peak extraction passive source localization using a single hydrophone in shallow water[J]. IEEE Trans on Vehicular Technology, 2020, 69(3): 3412–3423 [Article] [CrossRef] [Google Scholar]
  9. WARNER G A, DOSSO S E, DETTMER J, et al. Bayesian environmental inversion of airgun modal dispersion using a single hydrophone in the Chukchi Sea[J]. The Journal of the Acoustical Society of America, 2015, 137(6): 3009–3023 [Article] [Google Scholar]
  10. OGISO S, MIZUTANI K, WAKATSUKI N, et al. Robust localization of mobile robot in reverberant rooms using acoustic beacons with iterative Bayesian filtering[C]//2018 International Conference on Indoor Positioning and Indoor Navigation, 2018 [Google Scholar]
  11. WANG Biao, ZHU Zhihui, DAI Yuewei. Direction of arrival estimation research for underwater acoustic target based on sparse Bayesian learing with temporally correlated source vectors[J]. Acta Electronica Sinica, 2016, 44(3): 693–698 [Article] (in Chinese) [Google Scholar]
  12. REN Q Y, HERMAND J P. Bayesian tracking of time or space varying environment from ship noise recorded on a drifting vector sensor[C]//IEEE Oceans 2014-st. John's, 2014 [Google Scholar]
  13. CHU N, NING Y, YU L, et al. A high-resolution and low-frequency acoustic beamforming based on Bayesian inference and non-synchronous measurements[J]. IEEE Access, 2020, 8: 82500–82513 [CrossRef] [Google Scholar]
  14. GUO L, LIU J, ZHANG X, et al. Robust underwater acoustic channel estimation in impulsive noise environment[C]//2021 IEEE/CIC International Conference on Communications in China, 2021 [Google Scholar]
  15. SUN D, LI X, CAO Z, et al. Acoustic robust velocity measurement algorithm Based on variational bayes adaptive Kalman filter[J]. IEEE Journal of Oceanic Engineering, 2020, 46(1): 183–194 [Google Scholar]
  16. DOSSO S E, WILMUT M J, NIELSEN P L. Bayesian source tracking via focalization and marginalization in an uncertain Mediterranean Sea environment[J]. The Journal of the Acoustical Society of America, 2010, 128(1): 66–74 [Google Scholar]
  17. DOSSO S E, WILMUT M J. Comparison of focalization and marginalization for Bayesian tracking in an uncertain ocean environment[J]. The Journal of the Acoustical Society of America, 2009, 125(2): 717–722 [Google Scholar]
  18. LI Qianqian, YANG Fanlin, ZHANG Kai, et al. Moving source parameter estimation in an uncertain environment[J]. Acta Physica Sinica, 2016, 65(16): 164304 [Article] (in Chinese) [CrossRef] [Google Scholar]
  19. BOWMAN A W, AZZALINI A. Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations[M]. Oxford, England: Oxford University Press, 1997 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.