Open Access
Issue
JNWPU
Volume 40, Number 6, December 2022
Page(s) 1288 - 1296
DOI https://doi.org/10.1051/jnwpu/20224061288
Published online 10 February 2023
  1. GUPTE S L, MOHANDAS P I T, CONRAD J M, et al. A survey of quadrotor unmanned aerial vehicles[C]//Proceedings of IEEE Southeastcon, 2012 [Google Scholar]
  2. ANGELOV P. Sense and avoid in UAS: research and applications[M]. Hoboken: John Wiley & Sons, Ltd., 2012: 99–103 [Google Scholar]
  3. KORF R E. Depth-first iterative-deepening: an optimal admissible tree search[J]. Artificial Intelligence, 2012, 27(1): 97–109 [Google Scholar]
  4. CHABINI I, LAN S. Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks[J]. IEEE Trans on Intelligent Transportation Systems, 2002, 3(1): 60–74 [Article] [CrossRef] [Google Scholar]
  5. NANNICINI G, SCHULTE D, LIBERTI L, et al. Bidirectional A* search on time-dependent road networks[J]. Networks, 2011, 59(2): 240–251 [Google Scholar]
  6. STENTX A. Optimal and efficient path planning for partially known environments//Intelligent unmanned ground vehicles[M] Boston: Springer, 1997: 203–220 [Google Scholar]
  7. WONG W E, DEBROY V, GAO R, et al. The DStar method for effective software fault localization[J]. IEEE Trans on Reliability, 2014, 63(1): 290–238 [Article] [CrossRef] [Google Scholar]
  8. KOEING S, LIKHACHEV M. Fast replanning for navigation in unknown terrain[J]. IEEE Trans on Robotics, 2005, 21(3): 254–363 [Google Scholar]
  9. KARAMAN S, WALTER M R, PEREZ A, et al. Anytime Motion Planning using the RRT*[C]//IEEE International Conference on Robotics and Automation, 2011 [Google Scholar]
  10. RODRIGUEZ S, TANG X Y, LIEN J M, et al. An obstacle-based rapidly-exploring random tree[C]//IEEE International Conference on Robotics and Automation, 2006 [Google Scholar]
  11. WU X, XU L, ZHEN R, et al. Biased sampling potentially guided intelligent bidirectional RRT* algorithm for UAV path planning in 3D environment[J]. Mathematical Problems in Engineering, 2019, 2019: 5157403 [Google Scholar]
  12. SONG J, ZHAO M, LIU Y, et al. Multi-rotor UAVs path planning method based on improved artificial potential field method[C]//2019 Chinese Control Conference, 2019 [Google Scholar]
  13. SNAPE J, BERG J V D, GUY S J, et al. The hybrid reciprocal velocity obstacle[J]. IEEE Trans on Robotics, 2011, 27(4): 696–709 [Article] [CrossRef] [Google Scholar]
  14. ULRICH I, BORENSTEIN J. VFH+: reliable obstacle avoidance for fast mobile robots[C]//IEEE International Conference on Robotics and Automation, 1998 [Google Scholar]
  15. RASHEDI E, HOSSEIN N-P, SAEID S, et al. GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232–2248 [Article] [CrossRef] [Google Scholar]
  16. PETER J. M, LAARHOVEN V, EMILE H, et al. Simulated annealing//Simulated annealing: theory and application[M]. Dordrecht: Springer, 1987: 7-15 [Google Scholar]
  17. HU Y R, YANG S X. A knowledge based genetic algorithm for path planning of a mobile robot[C]//IEEE International Conference on Robotics and Automation, 2004 [Google Scholar]
  18. LYU Y, CHEN Y, TIAN J. Particle swarm optimization for fixed-wing UAV path planning[C]//International Conference on Autonomous Unmanned Systems, Singapore, 2021 [Google Scholar]
  19. CHHOTRAY A, DAYAL R P. Navigational control analysis of two-wheeled self-balancing robot in an unknown terrain using back-propagation neural network integrated modified DAYANI approach[J]. Scholarly Journal, 2019, 37(8): 1346–1362 [Google Scholar]
  20. SARADINDU G, PARTAP K P, PARHI D R. Performance comparison of novel WNN approach with RBFNN in navigation of autonomous mobile robotic agent[J]. Serbian Journal of Electrical Engineering, 2016, 13(2): 239–262 [Article] [CrossRef] [Google Scholar]
  21. KAHN G, VILLAFLOR A, DING B, et al. Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation[C]//IEEE International Conference on Robotics and Automation, 2018 [Google Scholar]
  22. VANEGAS G. SAMANIEGO F, GIRBES V, et al. Smooth 3D path planning for non-holonomic UAVs[C]//International Conference on Systems and Control. 2018 [Google Scholar]
  23. LEE D, SONG H J, SHIM D H. Optimal path planning based on spline-RRT* for fixed-wing UAVs operating in three-dimensional environments[C]//International Conference on Control, Automation and Systems, 2014 [Google Scholar]
  24. KELLER J, THAKUR D, LIKHACHEV M, et al. Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions[J]. IEEE Trans on Automation Science and Engineering, 2017, 14(1): 17–24 [Article] [CrossRef] [Google Scholar]
  25. BENDERS S, SCHOPFERER S. A line-graph path planner for performance constrained fixed-wing UAVs in wind fields[C]//International Conference on Unmanned Aircraft Systems, 2017 [Google Scholar]
  26. SONG X Q, HU S Q. 2D path planning with dubins-path-based A*algorithm for a fixed-wing UAV[C]//IEEE International Conference on Control Science and Systems Engineering, 2017 [Google Scholar]
  27. SANDERS G, RAY T. Optimal offline path planning of a fixed wing unmanned aerial vehicle (UAV) using an evolutionary algorithm[C]//IEEE Congress on Evolutionary Computation, 2007 [Google Scholar]
  28. ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Trans on Industrial Informatics, 2013, 9(1): 132–141 [Article] [CrossRef] [Google Scholar]
  29. ROBERGE V, TARBOUCHI M, LABONTE G. Fast genetic algorithm path planner for fixed-wing military UAV using GPU[J]. IEEE Trans on Aerospace and Electronic Systems, 2018, 54(5): 2015–2117 [Google Scholar]
  30. DUBINS L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[J]. American Journal of Mathematics, 1957, 79(3): 497–516 [Article] [CrossRef] [Google Scholar]
  31. SHKEL A M, LUMELSKY V. Classification of the dubins set[J]. Robotics and Autonomous Systems, 2001, 34(4): 179–202 [Article] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.