Open Access
Volume 41, Number 1, February 2023
Page(s) 144 - 152
Published online 02 June 2023
  1. LIU Weidong, LI Jiyu, ZHANG Wenbo, et al. Underwater image enhancement method with non-uniform illumination based on Retinex and ADMM[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 824–830. [Article] (in Chinese) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  2. IBRAHIM H, KONG N S P. Brightness preserving dynamic histogram equalization for image contrast enhancement[J]. IEEE Trans on Consumer Electronics, 2007, 53(4): 1752–1758. [Article] [CrossRef] [Google Scholar]
  3. LAND E H. The Retinex theory of color vision[J]. Scientific American, 1978, 237(6): 108–128 [Google Scholar]
  4. CAI B, XU X, GUO K, et al. A joint intrinsic-extrinsic prior model for Retinex[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017 [Google Scholar]
  5. GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Trans on Image Processing, 2017, 26(2): 982–993. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  6. WANG R, ZHANG Q, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019 [Google Scholar]
  7. ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019 [Google Scholar]
  8. GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020 [Google Scholar]
  9. WANG Y, WAN R, YANG W, et al. Low-light image enhancement with normalizing flow[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022 [Google Scholar]
  10. MA L, MA T, LIU R, et al. Toward fast, flexible, and robust low-light image enhancement[C]//o, 2022 [Google Scholar]
  11. WU W, WENG J, ZHANG P, et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022 [Google Scholar]
  12. JIN Y, YANG W, TAN R T. Unsupervised night image enhancement: when layer decomposition meets light-effects suppression[C]//17th European Conference on Computer Vision, Israel, 2002 [Google Scholar]
  13. YANG K F, ZHANG X S, LI Y J. A biological vision inspired framework for image enhancement in poor visibility conditions[J]. IEEE Trans on Image Processing, 2019, 29: 1493–1506 [Google Scholar]
  14. LIU Yueqin, LAI Huicheng, GAO Guxue, et al. Night color image adaptive enhancement algorithm based on visual receptive field[J]. Laser Journal, 2020, 41(2): 92–97. [Article] (in Chinese) [Google Scholar]
  15. ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017 [Google Scholar]
  16. KAPLAN E. The M, P, and K pathways of the primate visual system[J]. The Visual Neurosciences, 2004, 1: 481–493 [Google Scholar]
  17. RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention, Cham, 2015 [Google Scholar]
  18. YANG Zhenjian, SHANG Jiamei, ZHANG Zhongwei, et al. A new end-to-end image dehazing algorithm based on residual attention mechanism[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 901–908. [Article] (in Chinese) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of Machine Learning, 2021 [Google Scholar]
  20. RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259–268 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  21. HAI J, XUAN Z, YANG R, et al. R2RNet: Low-light image enhancement via real-low to real-normal network[J]. Journal of Visual Communication and Image Representation, 2023, 90: 103712 [Google Scholar]
  22. LI C, GUO C, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2021, 44(8): 4225–4238 [Google Scholar]
  23. ZHANG Y, GUO X, MA J, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129(4): 1013–1037 [Google Scholar]
  24. JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Trans on Image Processing, 2021, 30: 2340–2349 [NASA ADS] [CrossRef] [Google Scholar]
  25. LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of Computer Vision, Cham, 2016 [Google Scholar]
  26. ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[C]//International Conference on Learning Representations, 2021 [Google Scholar]
  27. LOH Y P, CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30–42 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.