Open Access
Volume 41, Number 1, February 2023
Page(s) 65 - 72
Published online 02 June 2023
  1. JORGE Ayllón Perez, VALENTÍN Miguel Eguía, JUANA Coello Sobrino, et al. Experimental results and constitutive model of the mechanical behavior of Ti6Al4V alloy at high temperature[J]. Procedia Manufacturing, 2019, 41: 723–730 [Article] [CrossRef] [Google Scholar]
  2. CHENG Wenyu, JOSE Outeiro, JEAN-PHILIPPE Costes, et al. A constitutive model for Ti6Al4V considering the state of stress and strain rate effects[J]. Mechanics of Materials, 2019, 137: 1–17 [Google Scholar]
  3. PAUL M Souza, JOSEBA Mendiguren, QI Chao, et al. A microstructural based constitutive approach for simulating hot deformation of Ti6Al4V alloy in the α+β phase region[J]. Materials Science & Engineering A, 2019, 748: 30–37 [Google Scholar]
  4. WOJCIECH Mocko, ADAM Brodecki. Application of optical field analysis of tensile tests for calibration of the Rusinek-Klepaczko constitutive relation of Ti6Al4V titanium alloy[J]. Materials & Design, 2015, 88: 320–330 [Article] [CrossRef] [Google Scholar]
  5. CEN Liu, SAURAV Goel, IÑIGO Llavori, et al. Benchmarking of several material constitutive models for tribology, wear, and other mechanical deformation simulations of Ti6Al4V[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97: 126–137 [Article] [Google Scholar]
  6. PAUL M Souza, HOSSEIN Beladi, RAJKUMAR Singh, et al. Constitutive analysis of hot deformation behavior of a Ti6Al4V alloy using physical based model[J]. Materials Science & Engineering A, 2015, 648: 265–273 [Article] [CrossRef] [Google Scholar]
  7. MARIEM Yaich, ADINEL Gavrus. New phenomenological material constitutive models for the description of the Ti6Al4V titanium alloy behavior under static and dynamic loadings[J]. Procedia Manufacturing, 2020, 47: 1469–1503 [Google Scholar]
  8. DUCOBU F, RIVIÈRE-LORPHÈVRE E, FILIPPI E. Material constitutive model and chip separation criterion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition[J]. International Journal of Mechanical Sciences, 2016, 107: 136–149 [Article] [Google Scholar]
  9. CAO T S, GACHET J M, MONTMITONNET P. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality[J]. Engineering Fracture Mechanics, 2014, 124: 124–125 [Article] [Google Scholar]
  10. SOYARSLAN C, RICHTER H, BARGMANN S. Variants of Lemaitre's damage model and their use in formability prediction of metallic materials[J]. Mechanics of Materials, 2016, 9258–79 [Article] [CrossRef] [Google Scholar]
  11. MICHELE Pettinà, FARID Biglari. Modelling damage and creep crack growth in structural ceramics at ultra-high temperatures[J]. Journal of the European Ceramic Society, 201434): 2799–2805 [Article] [CrossRef] [Google Scholar]
  12. ZHOU Guanglei, XU TaoA time-dependent thermo-mechanical creep model of rock[J]. Engineering Mechanics, 2017, 34(10): 1–10 [Article] [Google Scholar]
  13. HE J Z, WANG G Z. Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard[J]. Engineering Fracture Mechanics, 2016168): 131–146 [Article] [Google Scholar]
  14. ZHANG Yucai, JIANG Wenchun. Creep crack growth behavior analysis of the 9Cr-1Mo steel by a modified creep-damage model[J]. Materials Science & Engineering A, 2017708): 68–76 [Article] [CrossRef] [Google Scholar]
  15. HE Yuxin, MA Yu'e, CAO Rui. Study on creep damage and crack growth for TC11 under complex stress loading[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 9–16 [Article] (in Chinese) [Google Scholar]
  16. LEMAITRE J, DESMORAT R. Engineering damage mechanics: ductile, creep, fatigue and brittle failures[M]. Heidelberg: Springer-Verlag, 2005 [Google Scholar]
  17. DUNNE Fionn. Introduction to computational plasticity[M]. Oxford: Oxford University Press, 2005 [Google Scholar]
  18. WEN Jianfeng, TU ShantungA multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123: 197–210 [Article] [CrossRef] [Google Scholar]
  19. SIMOJ C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer, 1997 [Google Scholar]
  20. HE Yuxin, MA Yu'e, ZHANG Weihong, et al. Effects of build direction on thermal exposure and creep performance of SLM Ti6Al4V titanium alloy[J]. Engineering Failure Analysis, 2022, 135: 106063 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.