Open Access
Volume 41, Number 2, April 2023
Page(s) 282 - 292
Published online 07 June 2023
  1. CAI Jinshi. Aircraft system identification[M]. Beijing: China Astronautic Publishing House, 1995, 2–5 (in Chinese) [Google Scholar]
  2. MATTHEW G, MARK C. Smart projectile parameter estimation using meta-optimization[J]. Journal of Spacecraft & Rockets, 2019, 56(5): 1508–1519 [NASA ADS] [CrossRef] [Google Scholar]
  3. SHAO Gan, ZHANG Shuguang, TANG Peng. HGAPSO: a new aerodynamic parameters identification algorithm for small unmanned aerial vehicles[J]. Acta Aeronauticaet Astronautica Sinica, 2017, 38(4): 120365 [Article] (in Chinese) [Google Scholar]
  4. GAO B B, GAO S S, HU G G, et al. Maximum likelihood principle and moving horizon estimation based adaptive unscented Kalman filter[J]. Aerospace Science and Technology, 2018, 73: 184–196 [Article] [CrossRef] [Google Scholar]
  5. JOAO O, CHU Q P, MULDER J A, et al. Output error method and two step method for aerodynamic model identification[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, 2005 [Google Scholar]
  6. DING Di, QIAN Weiqi, WANG Qing. Identification of aircraft stability and control characteristics derivatives and analysis of random noise[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2177–2185 (in Chinese) [Google Scholar]
  7. FRANK F, BERNARD G, ILMARS C, et al. Flight behavior of an asymmetric body through spark range experiments using roll-yaw resonance for yaw enhancement[J]. Journal of Spacecraft and Rocket, 2015, 54(1): 266–277 [Google Scholar]
  8. KAR P K, SARKAR A K, UMAKANT J. Aerodynamic coefficients estimation of a flight vehicle from different flight trials under limited measurements[C]//AIAA Atmospheric Flight Mechanics Conference, Portland, 2011 [Google Scholar]
  9. MARIE A, SIMONA D, CLAUDE B, et al. Aerodynamic coefficient identification of a space vehicle from multiple free-flight tests[J]. Journal of Spacecraft and Rockets, 2017, 54(2): 1–10 [NASA ADS] [CrossRef] [Google Scholar]
  10. BRADLEY T B. Aerodynamic parameter identification for symmetric projectiles: an improved gradient based method[J]. Aerospace Science and Technology, 2013, 30119–127 [Article] [Google Scholar]
  11. LIU Yang, CHANG Sijiang, WEI Wei. Study on combined aerodynamic parameters identification using flight data of multiple projectiles[J]. Acta Armamentarii, 2020, 41(5): 890–901 [Article] (in Chinese) [Google Scholar]
  12. EUGENE A M. Real-time aerodynamic parameter estimation without air flow angle measurements[J]//Journal of Aircraft, 2012, 49(4): 1064–1076 [CrossRef] [Google Scholar]
  13. ARDA A. Aerodynamic parameter estimation of a missile without wind angle measurements[C]//AIAA Atmospheric Flight Mechanics Conference, Atlanta, 2014 [Google Scholar]
  14. LIU Yang. Study on Aerodynamic parameters identification of high-spin-stabilized projectile[D]. Nanjing: Nanjing University of Science and Technology, 2020 (in Chinese) [Google Scholar]
  15. DAWID M, MARIE A, SIMONA D. Global sensitivity analysis for modeling the free-flight behavior of an artillery projectile[J]. AIAA Journal, 2020, 58(7): 3139–3148 [NASA ADS] [CrossRef] [Google Scholar]
  16. LI Jinsheng, ZHUANG Ling, SONG Jiahong, et al. Aerocraft aerodynamic characteristic correction framework for engineering data[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 125157 [Article] (in Chinese) [Google Scholar]
  17. MCCOY R L. Modern exterior ballistics[M]. Atglen, PA: Schiffer Publishing Ltd, 2012 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.