Open Access
Issue |
JNWPU
Volume 41, Number 4, August 2023
|
|
---|---|---|
Page(s) | 679 - 687 | |
DOI | https://doi.org/10.1051/jnwpu/20234140679 | |
Published online | 08 December 2023 |
- OUYANG Ziyuan, XIAO Fugen. The mars and its environment[J]. Spacecraft Environment Engineering, 2012, 29(6): 591–601 [Article] (in Chinese) [Google Scholar]
- ARVIDSON R E, ANDERSON R C, BARTLETT P, et al. Localization and physical properties experiments conducted by Spirit at Gusev Crater[J]. Science, 2004, 305(5685): 821–824 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- GOLOMBEK M, RAPP D. Size-frequency distributions of rocks on Mars and Earth analog sites: implications for future landed missions[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 4117–4129 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- KRUMBEIN W C. Measurement and geological significance of shape and roundness of sedimentary particles[J]. Journal of Sedimentary Research, 1941, 11(2): 64–72 [CrossRef] [Google Scholar]
- BARRETT P J. The shape of rock particles, a critical review[J]. Sedimentology, 1980, 27(3): 291–303 [Article] [CrossRef] [Google Scholar]
- DOBKINS J E, FOLK R L. Shape development on Tahiti-nui[J]. Journal of Sedimentary Researc, 1970, 40(4): 1167–1203 [Google Scholar]
- SNEED E D, FOLK R L. Pebbles in the lower colorado river, texas a study in particle morphogenesis[J]. The Journal of Geology, 1958, 66(2): 114–150 [Article] [CrossRef] [Google Scholar]
- PARKER T J, MOORE H J, CRISP J A, et al. Petrogenetic interpretations of rock textures at the Pathfinder landing site[C]//Lunar and Planetary Science Conference, 1998 [Google Scholar]
- GREELEY R, IVERSEN D. Wind as a geological process on earth, mars, venus and titan[M]. London: Cambridge University Press, 1987 [Google Scholar]
- ZHAO Jing, WEI Shimin, TANG Ling, et al. Review on driving environment of mars rover[J]. Manned Spaceflight, 2019, 25(2): 256–264 [Article] (in Chinese) [Google Scholar]
- ZHAI Guanglong, HUANG Tieqiu. Exploring tractive performance of planetary Rover's rigid wheel on mixed terrain[J]. Journal of Northwesten Polytechnical University, 2020, 38(6): 1240–1248 [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
- SCHäFER B, GIBBESCH A, KRENN R, et al. Planetary rover mobility simulation on soft and uneven terrain[J]. Vehicle System Dynamics, 2010, 48(1): 149–169 [Article] [CrossRef] [Google Scholar]
- JIAO Zhen. Dynamics modelling and simulation for lunar rover based on terramechanics[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese) [Google Scholar]
- FERVERS C W. Improved FEM simulation model for tire-soil interaction[J]. Journal of Terramechanics, 2004, 41(2/3): 87–100 [CrossRef] [Google Scholar]
- KNUTH M A, JOHNSON J B, HOPKINS M A, et al. Discrete element modeling of a Mars Exploration Rover wheel in granular material[J]. Journal of Terramechanics, 2012, 49(1): 27–36 [Article] [NASA ADS] [CrossRef] [Google Scholar]
- ZHOU F, ARVIDSON R E, BENNETT K, et al. Simulations of mars rover traverses[J]. Journal of Field Robotics, 2014, 31(1): 141–160 [Article] [CrossRef] [Google Scholar]
- BEKKER G M. Introduction to terrain-vehicle systems[M]. Michigan: The University of Michigan Press, 1969 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.