Open Access
Volume 41, Number 4, August 2023
Page(s) 812 - 819
Published online 08 December 2023
  1. DUAN G, SONG C, LIU Y, et al. Can hypobaric hypoxia affect human thermal comfort? An experimental study in tibet, China[J]. Journal of Central South University, 2022, 29(7): 2388–2402. [Article] [CrossRef] [Google Scholar]
  2. YANG Xiong, LIU Yingshu, SHEN Min, et al. Maximum safe concentration of oxygen-enriched atmosphere in high altitude[J]. Journal of University of Science and Technology Beijing, 2009, 31(11): 1467–1471. [Article] (in Chinese) [Google Scholar]
  3. LIU Yingshu, YANG Xiong, SHEN Min, et al. Effect of low barometric pressure and oxygen-enriched atmosphere on flame speeding velocity over thin materials[J]. Journal of Combustion Science and Technology, 2010, 16(3): 199–203. [Article] (in Chinese) [Google Scholar]
  4. WEST J B. Commuting to high altitude: value of oxygen enrichment of room air[J]. High Altitude Medicine & Biology, 2002, 3(2): 223–235. [Article] [CrossRef] [Google Scholar]
  5. WEST J B. Safe upper limits for oxygen enrichment of room air at high altitude[J]. High Altitude Medicine & Biology, 2001, 2(1): 47–51 [CrossRef] [Google Scholar]
  6. CHEN J, ZHANG X, ZHAO Y, et al. Oxygen concentration effects on the burning behavior of small scale pool fires[J]. Fuel, 2019, 247: 378–385. [Article] [CrossRef] [Google Scholar]
  7. LASTRINA F A, MAGEE R S, MCAlEVY Ⅲ R F. Flame spread over fuel beds: solid-phase energy considerations[J]. Symposium on Combustion, 1971, 13(1): 935–948. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  8. DE RIS J L. Pressure modeling of fires[J]. Symposium on Combustion, 1973, 14(1): 1033–1044. [Article] [CrossRef] [Google Scholar]
  9. WIESER D, JAUCH P, WILLI U. The influence of high altitude on fire detector test fires[J]. Fire Safety Journal, 1997, 29(2/3): 195–204 [CrossRef] [Google Scholar]
  10. WANG Weigang, KONG Wenjun, ZHANG Peiyuan. Experimental research on flame propagation on hot thin solid fuel surface in low pressure environment[J]. Journal of Engineering Thermophysics, 2004(5): 887–890. [Article] (in Chinese) [Google Scholar]
  11. WEI Y, HU X, RONG J, et al. Experimental study of large-scale fire behavior under low pressure at high altitude[J]. Journal of Fire Sciences, 2013, 31(6): 481–494. [Article] [CrossRef] [Google Scholar]
  12. JIA Xuhong, YANG Xiaoguang, HUANG Song, et al. Study on combustion properties of aviation carpet under low ambient pressure[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 319–324. [Article] (in Chinese) [CrossRef] [EDP Sciences] [Google Scholar]
  13. TIAN R, LIU Q, FENG R, et al. Experiment study of cardboard box fire behavior under dynamic pressure in an altitude chamber[C]//ASME International Mechanical Engineering Congress and Exposition, Houston, Texas, USA, 2015 [Google Scholar]
  14. MAO Ying, ZHANG Hui, FENG Rui. Experimental research on combustion characteristics of small carton under different environment pressure[J]. Fire Science and Technology, 2016, 35(6): 759–762. [Article] (in Chinese) [Google Scholar]
  15. FENG Rui, TIAN Runhe, CHEN Kewei, et al. Experimental study of the effect of low pressures on solid fuel combustion characteristics[J]. Journal of Tsinghua University, 2019, 59(2): 111–121. [Article] (in Chinese) [Google Scholar]
  16. WANG W, WANG L, YANG R, et al. Investigation of the effect of low pressure on fire hazard in cargo compartment[J]. Applied Thermal Engineering, 2019, 158: 113775. [Article] [CrossRef] [Google Scholar]
  17. MA Q J, SHAO J C, WAN M S, et al. Experimental study on the burning behavior of cardboard box fire under low air pressure[J]. Fire and Materials, 2020, 45(2): 273–282 [Google Scholar]
  18. NIU Y, HE Y, HU X, et al. Experimental study of burning rates of cardboard box fires near sea level and at high altitude[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2565–2573. [Article] [CrossRef] [Google Scholar]
  19. DORR V A Fire studies in oxygen-enriched atmospheres[J]. Fire Flammability, 1970, 1(4): 91 [Google Scholar]
  20. NAKAMURA Y, AOKI A. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations-for fire safety in space habitats[J]. Advances in Space Research, 2007, 41(5): 777–782 [Google Scholar]
  21. HIRSCH D, WILLIAMS J, BEESON H. Pressure effects on oxygen concentration flammability thresholds of polymeric materials for aerospace applications[J]. Journal of Testing & Evaluation, 2006, 36(1): 69–72 [Google Scholar]
  22. HIRSCH D B, WILLIAMS J H, HARPER S A, et al. Oxygen concentration flammability thresholds of selected aerospace materials considered for the constellation program[C]//2nd IAASS Conference Space Safety in Global World, 2007 [Google Scholar]
  23. OSORIO A F, FERNANDEZ-PELLO C, URBAN D L, et al. Limiting conditions for flame spread in fire resistant fabrics[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2691–2697 [CrossRef] [Google Scholar]
  24. National Fire Protection Association. Standard for hypobaric facilities[S]. NFPA99B-2021, 2021 [Google Scholar]
  25. THOMSEN M, FERNANDEZ-PELLO C, OLSON S L, et al. Downward burning of PMMA cylinders: the effect of pressure and oxygen[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4837–4844 [CrossRef] [Google Scholar]
  26. ZHU Feng, WANG Shuangfeng. Effects of ambient pressure on flame spread over thermally-thick solid material[J]. Journal of Combustion Science and Technology, 2019, 25(5): 401–407. [Article] (in Chinese) [Google Scholar]
  27. QUINTIERE J G. Fundamentals of fire phenomena[M]. Chichester: John Wiley & Sons, 2006 [CrossRef] [Google Scholar]
  28. ZARZECKI M, QUINTIERE J G, LYON R E, et al. The effect of pressure and oxygen concentration on the combustion of PMMA[J]. Combustion and Flame, 2013, 160(8): 1519–1530 [CrossRef] [Google Scholar]
  29. DE RIS J L, WU P K, HESKESTAD G. Radiation fire modeling[J]. Proceedings of the Combustion Institute, 2000, 28(2): 2751–2759 [CrossRef] [Google Scholar]
  30. YAO W, HO X, RONG J, et al. Experimental study of large-scale fire behavior under low pressure at high altitude[J]. Journal of Fire Sciences, 2013, 31(6): 481–494 [CrossRef] [Google Scholar]
  31. LAUTENBERGER C W, DE RIS J L, DEMBSEY N A, et al. A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames[J]. Fire Safety Journal, 2005, 40(2): 141–176 [CrossRef] [Google Scholar]
  32. INCROPERA F P, DEWITT D P. Introduction to heat transfer[M]. New York: John Wiley & Sons, 1985 [Google Scholar]
  33. FENG R, TIAN R, ZHANG H, et al. Experimental study on the burning behavior and combustion toxicity of corrugated cartons under varying sub-atmospheric pressure[J]. Journal of Hazardous Materials, 2019, 379: 12078 [Google Scholar]
  34. MEALY C L, BENFER M, GOTTUK D T. Fire dynamics and forensic analysis of liquid fuel fires[R/OL]. (2012-05-01)[2022-08-16]. [Article] [Google Scholar]
  35. UCUNCU A, VEISILIND A. Energy recovery from mixed paper waste[J]. Waste Management and Research, 1993, 11: 507–513 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.