Open Access
Volume 41, Number 5, Octobre 2023
Page(s) 850 - 859
Published online 11 December 2023
  1. ZHANG Yuanlong, XIE Yu. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 45–57 [Article] (in Chinese) [Google Scholar]
  2. HUANG Changqiang, GUO Haifeng, DING Dali. A survey of trajectory optimization and guidance for hypersonic gliding vehicle[J]. Journal of Astronautics, 2014, 35(4): 369–379 [Article] (in Chinese) [Google Scholar]
  3. XIE Yu, LIU Luhua, TANG Guojian, et al. Trajectory optimization for hypersonic glide vehicle with multi-constraints[J]. Journal of Astronautics, 2011, 32(12): 2499–2504 [Article] (in Chinese) [Google Scholar]
  4. LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance Control and Dynamics, 2015, 39(2): 1–15 [Google Scholar]
  5. ZHAO D J, SONG Z Y. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming[J]. Acta Astronautica, 2017, 137(8): 60–69 [CrossRef] [Google Scholar]
  6. WANG Z, GRANT M J. Constrained trajectory optimization for planetary entry via sequential convex programming[C]//Proceedings of AIAA Atmospheric Flight Mechanics Conference, Reston, 2017 [Google Scholar]
  7. ZHOU Xiang, ZHANG Hongbo, HE Ruizhi, et al. Entry trajectory planning method based on 3D profile via convex optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 623842 [Article] (in Chinese) [Google Scholar]
  8. CHEN Qi, WANG Zhongyuan, CHANG Sijiang, et al. Optimal trajectory design under uncertainty for a gliding guided projectile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2593–2604 [Article] (in Chinese) [Google Scholar]
  9. YANG Z, LUO Y Z, ZHANG J. Robust planning of nonlinear rendezvous with uncertainty[J]. Journal of Guidance Control and Dynamics, 2017, 40(8): 1954–1967 [CrossRef] [Google Scholar]
  10. FISHER J, BHATTACHARYA R. Optimal trajectory generation with probabilistic system uncertainty using polynomial chaos[J]. Journal of Dynamic Systems Measurement and Control, 2011, 133(1): 014501 [CrossRef] [Google Scholar]
  11. WANG F, YANG S, XIONG F F, et al. Robust trajectory optimization using polynomial chaos and convex optimization[J]. Aerospace Science and Technology, 2019, 92(2): 314–325 [CrossRef] [Google Scholar]
  12. LI X, NAIR P B, ZHANG Z G. Aircraft robust trajectory optimization using nonintrusive polynomial chaos[J]. Journal of Aircraft, 2014, 51(5): 1592–1603 [CrossRef] [Google Scholar]
  13. JIANG X Q, LI S. Mars entry trajectory planning using robust optimization and uncertainty quantification[J]. Acta Astronautica, 2019, 161249–261 [CrossRef] [Google Scholar]
  14. GUO Haifeng, HUANG Changqiang, DING Dali, et al. Trajectory optimization for hypersonic gliding considering stochastic disturbance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1281–1290 [Article] (in Chinese) [Google Scholar]
  15. YANG Ben, LEI Jianchang, WANG Yuhang. Fast optimization method of reentry trajectory considering aerodynamic parameter perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 67–77 [Article] (in Chinese) [Google Scholar]
  16. ELDRED M S, WEBSTER C G, CONSTANTINE P G. Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos[C]//Proceedings of the 49th AIAA Structural Dynamics and Materials Conference, Reston, 2008 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.