Open Access
Issue
JNWPU
Volume 41, Number 6, Decembre 2023
Page(s) 1044 - 1053
DOI https://doi.org/10.1051/jnwpu/20234161044
Published online 26 February 2024
  1. HUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 13–29 (in Chinese) [Google Scholar]
  2. CHEN X, ZHOU Z. Inverse aerodynamic design for DEP propeller based on desired propeller slipstream[J]. Aerospace Science and Technology, 2020, 102(7): 105820 [CrossRef] [Google Scholar]
  3. PATIL M J. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft[D]. Atlanta: Georgia Institute of Technology, 1999 [Google Scholar]
  4. PALACIOS R, CESNIK C E S. Nonlinear aeroelastic modeling and experiments of flexible wings[R]. AIAA-2006-2186, 2006 [Google Scholar]
  5. ZHANG Chi. Research on coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft[D]. Xi'an: Northwestern Polytechnical University, 2020(in Chinese) [Google Scholar]
  6. HODGES D H, PATIL M J, CHAE S. Effect of thrust on bending-torsion flutter of wings[J]. Journal of Aircraft, 2002, 39(2): 371–376 [Article] [CrossRef] [Google Scholar]
  7. AGOSTINELLI C, LIU C, ALLEN C B, et al. Propeller-flexible wing interaction using rapid computational methods[R]. AIAA-2013-2418, 2013 [Google Scholar]
  8. TEIXEIRA P C, CESNIK C E S. Propeller effects on the response of high-altitude long-endurance aircraft[J]. AIAA Journal, 2019, 57(10): 4328–4342 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  9. XIE Changchuan, ZHANG Lijuan, LIU Yi, et al. Aeroelasticity quick analysis method of very propeller/flexible wing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 7–13(in Chinese) [Google Scholar]
  10. JONES, J R, CESNIK C E S. Preliminary flight test correlations of the x-hale aeroelastic experiment[J]. The Aeronautical Journal, 2015, 119(1217): 855–870 [Article] [CrossRef] [Google Scholar]
  11. FAN Zhongyun, ZHOU Zhou, ZHU Xiaoping, et al. High robustness nonlinear modification method for propeller blade element momentum theory[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 32–45(in Chinese) [Google Scholar]
  12. VELDHUIS L L. Propeller wing aerodynamic interference[D]. Delft: Technische Universiteit Delft, 2005: 353–364 [Google Scholar]
  13. CRISFIELD M A, GALVANETTO U, JELENI G. Dynamics of 3D co-rotational beams[J]. Computational Mechanics, 1997, 20(6): 507–519 [Article] [CrossRef] [Google Scholar]
  14. ZHAO Yonghui, HUANG Rui. Advanced aeroelasticity and control[M]. Beijing: Science Press, 2015: 63–70(in Chinese) [Google Scholar]
  15. TEIXEIRA P. Propeller effects on very flexible aircraft[D]. Michigan: University of Michigan, 2019: 129–150 [Google Scholar]
  16. BRANDT J B. Small-scale propeller performance at low speeds[D]. Champaign: University of Illinois, 2005 [Google Scholar]
  17. MURUA J, PALACIOS R, GRAHAM J M R. Assessment of wake-tail interference effects on the dynamics of flexible aircraft[J]. AIAA Journal, 2012, 50(7): 1575–1585 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  18. GUO Jiahao, ZHOU Zhou, FAN Zhongyun. A quick design method of propeller coupled with CFD correction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 72–81 (in Chinese) [Google Scholar]
  19. OTSUKA K, CARRE A D, PALACIOS R. Nonlinear aeroelastic analysis of high-aspect-ratio wings with a low-order propeller model[J]. Journal of Aircraft, 2022, 59(2): 292–306 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.