Open Access
Issue
JNWPU
Volume 41, Number 6, Decembre 2023
Page(s) 1033 - 1043
DOI https://doi.org/10.1051/jnwpu/20234161033
Published online 26 February 2024
  1. LI Xuelong. Vicinagearth security[J]. Communications of the CCF, 2022, 18(11): 44–52 (in Chinese) [Google Scholar]
  2. YAN Tijin, Xia Yuanqing, ZHANG Hongwei, et al. An anomaly detection method for irregularly sampled spacecraft time series data[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525019 (in Chinese) [Google Scholar]
  3. YANG H, GAO J Y, YUAN Y, et al. Imbalanced aircraft data anomaly detection[J/OL]. (2023-05-17)[2023-07-05]. https://doi.org/10.48550/arXiv.2305.10082 [Google Scholar]
  4. GAO Junyu, ZHANG Da, LI Xuelong. Fault detection of aircraft time series based on multi-scale representation[C]//The 6th China Aeronautical Science and Technology Conference, 2023 (in Chinese) [Google Scholar]
  5. GAO Junyu, YIN Gehao, LI Xuelong. Fault diagnosis of convolutional neural networks based on data of aeroplane sensors[C]//The 6th China Aeronautical Science and Technology Conference, 2023 (in Chinese) [Google Scholar]
  6. YU Guangwei, YAN Li. A novel bearing fault diagnosis method based on multi-scale transfer symbolic dynamic entropy and support vector machine[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 344–353 [Article] (in Chinese) [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. CUI L, Zhang Q, SHI Y, et al. A method for satellite time series anomaly detection based on fast-DTW and improved-KNN[J]. Chinese Journal of Aeronautics, 2023, 36(2): 149–159 [Article] [CrossRef] [Google Scholar]
  8. WANG L, HU Z, TIAN A et al. An inconsistency fault diagnosis method for lithium-ion cells in the battery pack based on piecewise dimensionality reduction and outlier identification[J]. Journal of Electrochemical Energy Conversion and Storage. 2023, 20(1): 011016 [Article] [CrossRef] [Google Scholar]
  9. DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations, 2021 [Google Scholar]
  10. DING Jianli, ZOU Yunkai, WANG Jing et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautics et Astronautica Sinica, 2019, 40(12): 167–177 (in Chinese) [Google Scholar]
  11. GOLAN I, EL-YANIV R. Deep anomaly detection using geometric transformations[C]//Proceedings of Advances in Neural Information Processing Systems, 2018 [Google Scholar]
  12. HE Jiahui, CHENG Zhijun, GUO Bo. Telemetry anomaly detection method based on joint dictionary learning and OCSVM[J]. Acta Aeronautics et Astronautica Sinica, 2023, 44(8): 327931 (in Chinese) [Google Scholar]
  13. YANG Hao, GAO Junyu, LI Xuelong. Anomaly detection of flight test data based on adaptive resampling[C]//The 6th China Aeronautical Science and Technology Conference, 2023 (in Chinese) [Google Scholar]
  14. WANG Zhikai, CHEN Sheng, FAN Wei. Effect of neural network width on combustor emission prediction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 126816 (in Chinese) [Google Scholar]
  15. ZHANG Y M, ZHAO H, MA J Y et al. A deep neural network-based fault detection scheme for aircraft IMU sensors[J]. International Journal of Aerospace Engineering, 2021, 2021: 1–13 [Google Scholar]
  16. DONG Y Q. An application of deep neural networks to the in-flight parameter identification for detection and characterization of aircraft icing[J]. Aerospace Science and Technology, 2018, 77: 34–49 [Article] [CrossRef] [Google Scholar]
  17. SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3th International Conference on Learning Representations, 2015 [Google Scholar]
  18. HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770–778 [Google Scholar]
  19. LI Zhongzhi, MA Jinyi, AI Jianliang et al. Fault detection and classification of aerospace sensors using deep neural networks fine-tuned from VGG16[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(suppl1): 727615 (in Chinese) [Google Scholar]
  20. MICJAIL T, ERIK C, STEFANOS Z. ViTs for SITS: vision transformers for satellite image time series[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023 [Google Scholar]
  21. KEOGH E J, PAZZANI M J. A simple dimensionality reduction technique for fast similarity search in large time series databases[C]//Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Current Issues and New Applications, 2000: 122–133 [Google Scholar]
  22. WANG Z, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]//AAAI Conference on Artificial Intelligence, 2015: 40–46 [Google Scholar]
  23. WU H, XIAO B, CODELLA N, et al. CVT: introducing convolutions to vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 22–31 [Google Scholar]
  24. LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117–2125 [Google Scholar]
  25. BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992: 144–152 [Google Scholar]
  26. ROSENBLATT F. Principles of neurodynamics. Perceptrons and the theory of brain mechanisms[J]. Archives of General Psychiatry, 1962, 7(3): 218–219 [Google Scholar]
  27. SHERSTINSKY A. Fundamentals of recurrent neural network(RNN) and long short-term memory(LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306 [Article] [NASA ADS] [CrossRef] [Google Scholar]
  28. ZHOU B, CUI Q, WEI X S, et al. BBN: Bilateral-Branch network with cumulative learning for long-tailed visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9719–9728 [Google Scholar]
  29. PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[J/OL](2017-10-28)[2023-07-05]. https://openreview.net/forum?id=BJJsrmfCZ [Google Scholar]
  30. VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579–2605 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.