Open Access
Issue
JNWPU
Volume 42, Number 1, February 2024
Page(s) 1 - 10
DOI https://doi.org/10.1051/jnwpu/20244210001
Published online 29 March 2024
  1. JIANG Guoqing, SUN Chao, LIU Xionghou, et al. Radiated noise measurement by a small-aperture vertical array based on robust principal component analysis[J]. Journal of Harbin Engineering University, 2020, 41(10): 1493–1499 [Article] (in Chinese) [Google Scholar]
  2. GAO Yuan, SHI Shengguo. Method and design of measuring the radiated noise using vertical array in the shallow sea[J]. Technical Acoustics, 2010, 29(6): 80–82 (in Chinese) [Google Scholar]
  3. FANG Erzheng, YANG Desen. Research on an acoustic measurement array for underwater target of low radiated noise based on vector hydrophone[J]. Technical Acoustics, 2009, 28(2): 91–92 [Article] (in Chinese) [Google Scholar]
  4. WU Guoqing, WANG Meigang, CHEN Shouhu, et al. Error analysis and correction method of underwater vessel radiated noise measurement by vertical array and signal hydrophone[J]. Acta Acoustic, 2007, 32(5): 398–403 [Article] (in Chinese) [Google Scholar]
  5. SUN Guiqing, YANG Desen, ZHANG Lanyue, et al. Research on the method for measuring radiated noise by an underwater target in low frequency band based on the vector hydrophone[J]. Acta Acoustic, 2002, 27(5): 429–434 [Article] (in Chinese) [Google Scholar]
  6. XIANG Longfeng, SUN Chao. An estimation method of ship radiated noise level based on matched field processing[J]. Acta Acoustic, 2014, 39(5): 570–576 [Article] (in Chinese) [Google Scholar]
  7. SHANG E C, WANG Y Y. Environmental mismatching effects on source localization processing in mode space[J]. Journal of the Acoustical Society of America, 1991, 89(5): 2285–2290 [Article] [Google Scholar]
  8. HAMSON R M, HEITMEYER R M. Environmental and system effects on source localization in shallow water by the matched-field processing of a vertical array[J]. Journal of the Acoustical Society of America, 1989, 86(5): 1950–1959 [Article] [Google Scholar]
  9. FEUILLADE C, DEL BALZO D R, Rowe M M. Environmental mismatch in shallow-water matched-field processing: geoacou-stic parameter variability[J]. Journal of the Acoustical Society of America, 1989 85(6): 2354–2364 [Article] [Google Scholar]
  10. LIU Zongwei, SUN Chao, DU Jinyan. The measure of environmental sensitivity in detection performance degradation[J]. Acta Physica Siniccl, 2013, 62(6): 064303 [Article] (in Chinese) [Google Scholar]
  11. ZHANG Shaodong, SUN Chao, XIE Lei, et al. Influence of environmental uncertainty on source power estimation in shallow water waveguide[J]. Acta Physica Siniccl, 2013, 70(24): 244301[Article] (in Chinese) [Google Scholar]
  12. YANG Kunde, MA Yuanliang, ZOU Shixin, et al. Linear matched field processing based on environmental perturbation[J]. Acta Acoustic, 2006, 31(6): 496–505 [Article] (in Chinese) [Google Scholar]
  13. GINGRAS D F, GERR N L. Minimax robust matched-field processing[J]. Journal of the Acoustical Society of America, 1993, 93(5): 2798–2808 [Article] [Google Scholar]
  14. YANG Kunde, MA Yuanliang. Robust adaptive matched field processing with sector eigenvector constraints[J]. Acta Acoustic, 2006, 31(5): 400–409 [Article] (in Chinese) [Google Scholar]
  15. SCHMIDT H, BAGGEROER A B, KUPERMAN W A. Environmentally tolerant beamforming for high-resolution matched field processing: deterministic mismatch[J]. Journal of the Acoustical Society of America, 1990, 88(4): 1851–1862 [Article] [Google Scholar]
  16. SHOREY J A, NOLTE L W, KROLIK J L. Computationally efficient monte carlo estimation algorithms for matched field processing in uncertain ocean environments[J]. Journal of the Acoustical Society of America, 1994, 2(3): 285–314 [Google Scholar]
  17. FRICHTER G M, BYRNE C L, FEUILLADE C. Sector-focused stability methods for robust source localization in matched-field processing[J]. Journal of the Acoustical Society of America, 1990, 88(6): 2843–2851 [Article] [Google Scholar]
  18. CHANDLER H A, FEUILLADE C, SMITH G B. Sector-focused processing for stabilized resolution of multiple acoustic sources[J]. Journal of the Acoustical Society of America, 1995, 97(4): 2159–2172 [Article] [Google Scholar]
  19. COLLINS M D, KUPERMAN W A. Focalization: environmental focusing and source localization[J]. Journal of the Acoustical Society of America, 1991, 90(3): 1410–1422 [Article] [Google Scholar]
  20. PORTER M B. The matched field processing benchmark problems[J]. Journal of Computational Acoustics, 1994, 2(3): 161–185 [Article] [Google Scholar]
  21. VAZ A I F, VICENTE L N. A particle swarm pattern search method for bound constrained global optimization[J]. Journal of Global Optimization, 2007, 39(2): 197–219 [Article] [Google Scholar]
  22. DORIGO M, GAMBARDELLA L M. Ant colonies for the traveling salesman problem[J]. Biosystems, 1997, 43(2): 73–81 [Google Scholar]
  23. SAMBRIDGE M, DRIJKONINGEN G. Genetic algorithms in seismic waveform inversion[J]. Geophysical Journal of the Royal Astronomical Society, 1992, 109(2): 323–342 [Google Scholar]
  24. ZHANG Shaodong, SUN Chao, WANG Xuan. Estimation of acoustic transfer function by using genetic algorithm[C]//Oceans Conference, Chennai, India, 2022 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.