Open Access
Issue
JNWPU
Volume 42, Number 2, April 2024
Page(s) 368 - 376
DOI https://doi.org/10.1051/jnwpu/20244220368
Published online 30 May 2024
  1. MARK W·Spang, SETH Hutchinson, M·Vaderjasaga. Robot modeling and control[M]. Beijing: Machinery Industry Press, 2016 (in Chinese) [Google Scholar]
  2. PETER Corke. Robotics, Machine Vision and Control[M]. Beijing: Electronics Industry Press, 2016 (in Chinese) [Google Scholar]
  3. DING Xuegong. Research on robot control[M]. Hangzhou: Zhejiang University Press, 2006 (in Chinese) [Google Scholar]
  4. CERVANTES I, ALVARE-RAMIREZ J. On the PID tracking control of robot manipulators[J]. Systems & Control Letters, 2001, 42(1): 37–46 [Google Scholar]
  5. ZHANG Tie, HONG Jingdong, LI Qiufen, et al. Wave friction correction method for a robot based on BP neural net-work[J]. Journal of Engineering Science, 2019, 41(8): 1085–1091. [Article] (in Chinese) [Google Scholar]
  6. MA Yuhao, LIANG Yanbing. An obstacle avoidance algorithm for manipulator based on sixth-order polynomial trajectory planning[J]. Journal of Northwest Polytechnical University, 2020, 38(2): 392–400. [Article] (in Chinese) [Google Scholar]
  7. YANRU L, YAN Z. Two-DOF manipulator trajectory tracking control based on unfalsified control[C]//The 27th Chinese Cont-rol and Decision Conference, Qingdao, 2015: 4563–4566 [Google Scholar]
  8. ABDALLA A Y, ABDALLA T Y, CHYAID A M. Grasshopper algorithm based fuzzy system for trajectory tracking of robot manipulator[C]//2022 International Conference on Electrical, Computer and Energy Technologies, Prague, 2022: 1–5 [Google Scholar]
  9. ZHANG X, GU J, ASAD M U, et al. Beetle bee algorithm applied to trajectory tracking control of omni manipulator[C]//2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering, Lahore, 2022: 1–5 [Google Scholar]
  10. SINGH R, PRASAD L B. Optimal trajectory tracking of robotic manipulator using ant colony optimization[C]//2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, Gorakhpur, 2018: 1–6 [Google Scholar]
  11. SHAOMING L, RUIPENG L. Research on trajectory tracking control of multiple degree of freedom manipulator[C]//2017 32nd Youth Academic Annual Conference of Chinese Association of Automation, Hefei, 2017: 218–222 [Google Scholar]
  12. JUAN W, YANG H, XIE H. Control of manipulator trajectory tracking based on improved RBFNN[C]//2009 International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, 2009: 142–145 [Google Scholar]
  13. MIRÓ J V, WHITE A S, GILL R. On-line time-optimal algorithm for manipulator trajectory planning[C]//1997 European Control Conference, Brussels, 1997: 2611–2616 [Google Scholar]
  14. ATALAR-AYYLLDLZ B, KARAHAN O. Tuning of fractional order pid controller using CS algorithm for trajectory tracking control[C]//2018 6th International Conference on Control Engineering & Information Technology, Istanbul, 2018: 1–6 [Google Scholar]
  15. ZHANG L, CHENG L. An adaptive neural network control method for robotic manipulators trajectory tracking[C]//2019 Chinese Control and Decision Conference, Nanchang, 2019: 4839–4844 [Google Scholar]
  16. WIDYIANTO A, YAZID E, MIRDANIES M, et al. Optimization of PD controller using ACO for the trajectory tracking of a ship-mounted two-DOF manipulator system[C]//2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering, Yogyakarta, 2022: 634–638 [Google Scholar]
  17. LAMPINEN S, NIEMI J, MATTILA J. Flow-bounded trajectory-scaling algorithm for hydraulic robotic manipulators[C]//2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Boston, 2020: 619–624 [Google Scholar]
  18. ZHU Q, WANG J, ZHANG W A, et al. A Geometry based IK solver and b-spline method for trajectory tracking of 5-DOF manipulators[C]//2018 37th Chinese Control Conference, Wuhan, 2018: 3865–3870 [Google Scholar]
  19. YANG Yimin. Researches on extreme learning theory for system identification and applications[D]. Changsha: Hunan University, 2013 (in Chinese) [Google Scholar]
  20. YU Xinbo, HE Wei, XUE Chengqian, et al. Disturbance observer-based adaptive neural network tracking control for robots[J]. Acta Automatica Sinica, 2019, 45(7): 1307–1324. [Article] (in Chinese) [Google Scholar]
  21. WANG Leikun. Research on trajectory control of drilling arm of rock drilling robot[D]. Ganzhou: Jiangxi University of Science and Technology, 2019 (in Chinese) [Google Scholar]
  22. CUI Minqi. Dynamical modeling of SCARA robot based on lagrange formulation[J]. Mechanical Design and Manufacturing, 2013(12): 76–78. [Article] (in Chinese) [Google Scholar]
  23. ZHOU Gang, YAO Qionghui, CHEN Yongbing, et al. Global straight-line tracking control of ships based on input-output linearization[J]. Control Theory and Application, 2007(1): 117–121. [Article] (in Chinese) [Google Scholar]
  24. LI Tieshan, YANG Yansheng, ZHENG Yunfeng. Input-output linearization designs for straight-line tracking control of undera-ctuated ships[J]. System Engineering and Electronics, 2004(7): 945–948. [Article] (in Chinese) [Google Scholar]
  25. SHUAI Xin, LI Yanjun, WU Tiejun. Real time predictive control algorithm for endpoint trajectory tracking of flexible mani-pulator[J]. Journal of Zhejiang University, 2010, 44(2): 259–264. [Article] (in Chinese) [Google Scholar]
  26. SHOHEI Hagane, LIZ Katherine Rincon Ardila, TAKUMA Katsumata, et al. Adaptive generalized predictive controller and cartesian force control for robot arm using dynamics and geometric identification[J]. Journal of Robotics and Mechatronics, 2018, 30(6): 927–942. [Article] [Google Scholar]
  27. CHENG Linyun, ZHANG Lei, SONG Xiaona. Adaptive control method of manipulator based on RBF neural network[J]. Computer Measurement and Control, 2019, 27(7): 79–84. [Article] (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.