Open Access
Issue |
JNWPU
Volume 42, Number 4, August 2024
|
|
---|---|---|
Page(s) | 606 - 615 | |
DOI | https://doi.org/10.1051/jnwpu/20244240606 | |
Published online | 08 October 2024 |
- MILLEN S, MURPHY A. Modelling and analysis of simulated lightning strike tests: a review[J]. Composite Structures, 2021, 274: 114347 [Article] [CrossRef] [Google Scholar]
- WU GangZHAO LongGAO Yanqiu, et al. Research on the application of stitching technology in composite liquid molding preforms[J]. Aeronautical Manufacturing Technology, 2012(23): 70–72 (in Chinese) [Google Scholar]
- DONG Jiuzhi, GENG Zhengyan, WANG Liwen, et al. Research progress on unilateral suture technology of composite preforms[J]. Aeronautical Manufacturing Technology, 2022(16): 46–53 (in Chinese) [Google Scholar]
- WANG F S, ZHANG Y, MA X T, et al. Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh[J]. Journal of Materials Science & Technology, 2019, 35(11): 12–23 [NASA ADS] [CrossRef] [Google Scholar]
- LU Xiang, ZHAO Miao, SHAN Zezhong. Simulation of lightning strike protection performance of composite materials with different aluminum spray parameters[J]. Journal of Aeronautical Materials, 2020, 40(2): 10–19 (in Chinese) [Google Scholar]
- ZHU Huixin, FU Kunkun, LIU Haiqing, et al. Design a dual-layer lightning strike protection for carbon fiber reinforced[J]. Composites Part B: Engineering, 2022, 247: 110330 [Article] [CrossRef] [Google Scholar]
- HIRANO Yoshiyasu, YOKOZEKI Tomohiro, ISHIDA Yuichi, et al. Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix[J]. Composites Science and Technology, 2016, 127: 1–7 [Article] [CrossRef] [Google Scholar]
- KUMAR Vipin, SHARMA Sushant, PATHAK Abhishek, et al. Interleaved MWCNT buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage[J]. Composite Structures, 2019, 210: 581–589 [Article] [CrossRef] [Google Scholar]
- REHBEIN J, WIERACH P, GRIES T, et al. Improved electrical conductivity of NCF-reinforced CFRP for higher damage resistance to lightning strike[J]. Composites Part A: Applied Science & Manufacturing, 2017, 100: 352360 [CrossRef] [Google Scholar]
- LOMBETTI D M, SKORDOS A A. Lightning strike and delamination performance of metal tufted carbon composites[J]. Composite Structures, 2018, 209: 694–699 [Google Scholar]
- CAI Yan, CAI Lin, ZHU Lingang. Study on impact damage resistance of composite laminates sewn by tufting method[J]. Journal of Mechanical Strength, 2014, 36(4): 5–9 (in Chinese) [Google Scholar]
- KOISSIN V, KUSTERMANS J, LOMOV S V, et al. Structurally stitched NCF preforms: quasi-static response[J]. Composites Science & Technology, 2009, 69(15/16): 2701–2710 [CrossRef] [Google Scholar]
- COLIN D V M, SKORDOS A A, MAY M, et al. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non crimp fabric composites: mode Ⅰ[J]. Engineering Fracture Mechanics, 2012, 96: 11–25 [CrossRef] [Google Scholar]
- VERMA K K, VISWAMURTHY S R, GADDIKERI K M, et al. Tufting thread and density controls the mode-Ⅰ fracture toughness in carbon/epoxy composite[J]. Composite Structures, 2020, 261: 113272 [Google Scholar]
- LIU L S, WANG P, LEGRAND X, et al. Investigation of mechanical properties of tufted composites: influence of tuft length through the thickness[J]. Composite Structures, 2017, 172: 221–228 [CrossRef] [Google Scholar]
- FC A, RL B, GK A, et al. Shape memory alloy tufted composites combining high delamination resistant and crack closure properties[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106455 [CrossRef] [Google Scholar]
- KHOR W, RAVINDRAN A R, CIAMPA F, et al. Improving the damage tolerance of composite T-joints using shape memory alloy tufts[J]. Composites Part A: Applied Science and Manufacturing, 2023, 168: 107474 [CrossRef] [Google Scholar]
- LU Xiang, ZHAO Miao, SHAN Zezhong, et al. Electrothermal coupling model of composite lightning strike protection[J]. Journal of Aeronautical Materials, 2019, 39(4) 10–19 (in Chinese) [Google Scholar]
- WANG Yeqing. Multiphysics analysis of lightning strike damage in laminated carbon/glass fiber reinforced polymer matrix composite materials: a review of problem formulation and computational modeling[J]. Composites Part A: Applied Science & Manufacturing, 2017, 101: 543–553 [CrossRef] [Google Scholar]
- ZHANG Jingzhou. Advanced heat transfer[M]. Beijing: Science Press, 2009: 30–35 (in Chinese) [Google Scholar]
- DHANYA T M, SEKHER Y C. Lightning strike effect on carbon fiber reinforced composites-effect of copper mesh protection[J]. Materials Today Communications, 2018, 16: 124–134 [CrossRef] [Google Scholar]
- YANG Shiming, TAO Wenquan. Heat transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998 (in Chinese) [Google Scholar]
- WANG F S, ZHANG Y, MA X T, et al. Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh[J]. Journal of Materials Science & Technology, 2019, 35(11): 12–23 [NASA ADS] [CrossRef] [Google Scholar]
- ARP SAE. Aircraft lightning environment and related test waveforms[S]. SAE ARP 5412B-2013, 2013 [Google Scholar]
- FU Shangchen, ZHOU Yinghui, SHI Lihua, et al. Lightning damage experiment and electro-thermal coupling simulation of carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2015(1): 10–19 (in Chinese) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.