Open Access
Issue
JNWPU
Volume 43, Number 2, April 2025
Page(s) 201 - 211
DOI https://doi.org/10.1051/jnwpu/20254320201
Published online 04 June 2025
  1. ZHANG Yuanlong, XIE Yu. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023377 (in Chinese) [Google Scholar]
  2. ZHAO S, ZHU J W, BAO W Met al. High-dynamic intelligent maneuvering guidance strategy via deep reinforcement learning[J]. Journal of Aerospace Engineering, 2023, 237(11): 154–165 [Google Scholar]
  3. LEAVITTE J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control and Dynamics, 2007, 30(2): 473–481 [Article] [Google Scholar]
  4. GUO Dongzi, HUANG Rong, XU Hechuanet al. Research on gradient guidance method for depth deterministic strategy of reentry aircraft[J]. Systems Engineering and Electronic, 2022, 44(6): 1942–1949 (in Chinese) [Google Scholar]
  5. XUE S, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1273–1281 [Article] [Google Scholar]
  6. LUO X L, CHEN C, ZENG C N, et al. Deep reinforcement learning for joint trajectory planning, transmission scheduling, and access control in UAV-assisted wireless sensor networks[J]. Sensors, 2023, 23(10): 423–434 [Google Scholar]
  7. LI J, CAO S, LIU X J, et al. Trans-UTPA: PSO and MADDPG based multi-UAVs trajectory planning algorithm for emergency communication[J]. Frontiers in Neurorobotics, 2023, 16(1): 432–440 [Google Scholar]
  8. GAO Jiashi. Research on trajectory optimization and guidance methods for lift type re-entry vehicles[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese) [Google Scholar]
  9. CHENG Y, SHUI Z S, XU C, et al. Cross-cycle iterative unmanned aerial vehicle reentry guidance based on reinforcement learning[C]//IEEE International Conference on Unmanned Systems, 2019: 587-592 [Google Scholar]
  10. FANG Ke, ZHANG Qingzhen, NI Kun, et al. Reentry guidance law under flight time constraints[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 90–97 (in Chinese) [Google Scholar]
  11. WU T C, WANG H L, LIU Y H, et al. Learning-based interfered fluid avoidance guidance for hypersonic reentry vehicles with multiple constraints[J]. ISA Transactions, 2023, 39(1): 139–150 [Google Scholar]
  12. ZHANG Wanqing, YU Wenbin, LI Jinglinet al. Intelligent lateral maneuvering and re-entry coordinated guidance for aircraft based on longitudinal analytical solutions[J]. Acta Armamentarii, 2021, 42(7): 1400–1411 (in Chinese) [Google Scholar]
  13. LI Z, SUN X, HU C, et al. Neural network based online predictive guidance for high lifting vehicles[J]. Aerospace Science and Technology, 2018, 82(3): 149–160 [Google Scholar]
  14. SHI Y, WANG Z. Onboard generation of optimal trajectories for hypersonic vehicles using deep learningJournal of Spacecraft and Rockets 2021582400414 [Article] [Google Scholar]
  15. ZHANG Jili, LIU Kai, FAN Yazhuo, et al. Predictor-corrector switching reentry guidance method based on neural network range estimation model[J]. Tactical Missile Technology, 2020, 1(5): 93–100, 164 (in Chinese) [Google Scholar]
  16. ZHAO Jiang, ZHOU Rui. Predictor-corrector reentry guidance based on feedback bank angle control[J]. Acta Armamentarii, 2015, 36(5): 823–830 (in Chinese) [Google Scholar]
  17. WANG Xiao, GUO Jie, TANG Shengjinget al. Analytical reentry guidance method based on quasi-equilibrium glide[J]. Acta Armamentarii, 2019, 40(1): 58–67 (in Chinese) [Google Scholar]
  18. MOZER M C, SMOLENSKY P. Skeletonization: a technique for trimming the flat from a network via relevance assessment[C]//Proceedings of the 2nd International Conference on Neural Information Processing Systems, 1988: 107-115 [Google Scholar]
  19. LU P. Entry guidance: a unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 713–728 [Article] [Google Scholar]
  20. KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90 [CrossRef] [Google Scholar]
  21. PHILLIPS T H. A common aero vehicle(CAV) model, description, and employment guide[R/OL]. (2003-01-15)[2024-03-01]. [Article]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.