Issue |
JNWPU
Volume 38, Number 2, April 2020
|
|
---|---|---|
Page(s) | 412 - 419 | |
DOI | https://doi.org/10.1051/jnwpu/20203820412 | |
Published online | 17 July 2020 |
Structural Reliability Algorithms of Kriging Model Based on Improved Learning Strategy
基于改进学习策略的Kriging模型结构可靠度算法
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Received:
4
June
2019
Aiming at the problems of implicit and highly nonlinear limit state function in the process of reliability analysis of mechanical products, a reliability analysis method of mechanical structures based on Kriging model and improved EGO active learning strategy is proposed. For the problem that the traditional EGO method cannot effectively select points in the limit state surface region, an improved EGO method is proposed. By dealing with the predicted values of sample point model with absolute values and assume that the distribution state of response values remains the same, the work focus of active learning selection points is moved to the vicinity, where the points are with larger prediction variance or close to the limit state surface. Three examples show that, compared with the classical active learning method, the proposed method has good global and local search ability, and can estimate the exact failure probability value under the condition of less calculation of the limit state function.
摘要
针对机械产品可靠性分析过程中,极限状态函数隐式、高度非线性而导致可靠性求解困难等问题,提出一种基于Kriging模型和改进EGO主动学习策略的可靠性求解算法。对于传统EGO方法无法在极限状态面区域进行有效选点问题,提出一种改进的EGO方法,通过对样本点模型预测值做绝对值处理,基于响应值分布状态不变假设,将主动学习选点重心移到预测方差较大和极限状态面附近,避免对不必要区域的过量选点,从而减少极限状态函数值的计算或试验次数,有效提高了可靠性计算效率。通过3个算例表明:与传统主动学习方法相比,所提方法具有良好的全局和局部搜索能力,能够在较少计算极限状态函数次数条件下,估算得到精确的失效概率值。
Key words: structural reliability / Kriging model / active learning function / Monte Carlo method / failure probability / algorithm
关键字 : 结构可靠性 / Kriging模型 / 主动学习 / Monte Carlo方法 / 失效概率 / 算法
© 2019 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.