Open Access
Issue
JNWPU
Volume 38, Number 2, April 2020
Page(s) 412 - 419
DOI https://doi.org/10.1051/jnwpu/20203820412
Published online 17 July 2020
  1. Hasofer A M, Lind N C. Exact and Invariant Second-Moment Code Format[J]. Journal of Engineering Mechanics, 1974, 100(1): 111–21 [Google Scholar]
  2. Li Hongshuang, Ma Yuanzhuo. Unified Methods for Structural Reliability Analysis and Stochastic Optimization Design[M]. Beijing: National Defense Industry Press, 2015 (in Chinese) [Google Scholar]
  3. Wei Juan, Zhang Jianguo Qiu Tao. Structural Reliability Algorithm Based on Improved Dynamic Kriging Model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 373–380 [Article] (in Chinese) [Google Scholar]
  4. Liu Zhan, Zhang Jianguo, Wang Cancan, et al. Hybrid Structural Reliability Method Combining Optimized Kriging Model and Importance Sampling[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1347–1355 [Article] (in Chinese) [Google Scholar]
  5. Jones D R, Schonlau M, Welch W J. Efficient Global Optimization of Expensive Black-Box Functions[J]. Journal of Global Optimization, 1998, 13(4): 455–492 10.1023/A:1008306431147 [CrossRef] [Google Scholar]
  6. Bichon B J, Eldred M S, Swiler L P, et al. Efficient Global Reliability Analysis for Nonlinear Implicit Performance Function[J]. AIAA Journal, 2008, 46(10): 2459–2468 10.2514/1.34321 [CrossRef] [Google Scholar]
  7. Echard B, Gayton N, Lemaire M. AK-MCS:an Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145–154 10.1016/j.strusafe.2011.01.002 [CrossRef] [Google Scholar]
  8. Lyu Zhaoyang, Lu Zhenzhou, Wang Pan. A New Learning Function for Kriging and Its Applications to Solve Reliability Problems in Engineering[J]. Computers and Mathematics with Applications, 2015, 70:1182–1197 10.1016/j.camwa.2015.07.004 [CrossRef] [Google Scholar]
  9. Sun Zhili, Wang Jian, Li Rui, et al. LIF:a New Kriging Based Learning Function and Its Application to Structural Reliability Analysis[J]. Reliability Engineering & System Safety, 2017, 157: 152–165 [Article] [CrossRef] [Google Scholar]
  10. Huang Xiaoxu, Chen Jianqiao, Zhu Hongping. Assessing Small Failure Probabilities by AK-SS:an Active Learning Method Combining Kriging and Subset Simulation[J]. Structural Safety, 2016, 59:86–95 10.1016/j.strusafe.2015.12.003 [CrossRef] [Google Scholar]
  11. Balesdent M, Morio J, Marzat J. Kriging-Based Adaptive Importance Sampling Algorithms for Rare Event Estimation[J]. Structural Safety, 2013, 44: 1–10 10.1016/j.strusafe.2013.04.001 [CrossRef] [Google Scholar]
  12. Depina I, Le TMH, Fenton G, et al. Reliability Analysis with Metamodel Line Sampling[J]. Structural Safety, 2016, 60: 1–15 10.1016/j.strusafe.2015.12.005 [CrossRef] [Google Scholar]
  13. Yun Wanying, Lu Zhenzhou, Jiang Xian. An Eficient Reliability Analysis Method Combing Adaptive Kriging and Modifed Importance Sampling for Small Failure Probability[J]. Structural and Multidisciplinary Optimization, 2018, 58:1383–1393 10.1007/s00158-018-1975-6 [CrossRef] [Google Scholar]
  14. Kaymaz I. Application of Kriging Method to Structural Reliability Problems[J]. Structural Safety, 2005, 27(2): 133–151 10.1016/j.strusafe.2004.09.001 [CrossRef] [Google Scholar]
  15. Jones D R. A Taxonomy of Global Optimization Methods Based on Response Surfaces[J]. Journal of Global Optimization, 2001, 21:345–383 10.1023/A:1012771025575 [CrossRef] [Google Scholar]
  16. Huang Xiaoxu, Chen Jianqiao. Reliability Analysis Based on Active Learning Kriging Model[J]. Chinese Journal of Solid Mechanics, 2016, 37(2): 172–180 [Article] (in Chinese) [Google Scholar]
  17. Choi S K, Canfield R A, Grandhi R. Reliability-Based Structural Design[M]. London: Springer, 2007:111–113 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.