Issue |
JNWPU
Volume 40, Number 2, April 2022
|
|
---|---|---|
Page(s) | 458 - 464 | |
DOI | https://doi.org/10.1051/jnwpu/20224020458 | |
Published online | 03 June 2022 |
Trajectory tracking control of failure satellite with actuator jumping fault
执行器跳变故障的失效卫星轨迹跟踪控制
1
Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China
2
Beijing Institute of Electronic System Engineering, Beijing 100854, China
Received:
13
November
2019
This paper studied the trajectory tracking control of a failure satellite that has actuator jumping fault. It proposed a design method based on the jumping control input for the model reference tracking controller. By comb-ining the stochastic stability definition with model reference tracking, it gave the mathematical descriptions of the trajectory tracking control of the failure satellite. It used the linear matrix inequality method and the parametric solution method of the nonhomogeneous generalized Sylvester matrix equation to design the robust H∞ state feedback control law and the complete parametric feed-forward tracking compensator respectively, with the disturbance of the failure satellite and its thrust constraint considered simultaneously. The numerical simulation results on the model of the satellite rendezvous system show that the design method proposed in this paper is effective.
摘要
研究了执行器跳变故障的失效卫星轨迹跟踪控制问题,提出了具有跳变控制输入的模型参考跟踪控制器设计方法。结合随机稳定和模型参考跟踪定义,给出了失效卫星轨迹跟踪控制的问题描述。同时考虑系统存在扰动以及推力受限情形,利用线性矩阵不等式方法和非齐次广义Sylvester矩阵方程的参数化解方法,分别设计了对干扰具有抑制效果的鲁棒H∞状态反馈控制律和完全参数化形式的前馈补偿器。将所提出的方法应用于卫星在轨交会控制系统的控制器设计,仿真结果验证了所提方法的有效性。
Key words: actuator jumping fault / failure satellite / model reference tracking / parametric method / trajectory tracking control
关键字 : 跳变故障 / 失效卫星 / 模型参考跟踪 / 参数化方法
© 2022 Journal of Northwestern Polytechnical University. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.