Open Access
 Issue JNWPU Volume 42, Number 1, February 2024 165 - 172 https://doi.org/10.1051/jnwpu/20244210165 29 March 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 2 较大A/D情形下的驻留时间分布函数

### 2.1 理论计算

τt+τ < 2τ时, 根据(5)式和(7)式, 逃逸速率可近似为

t1=t+τ, 且将(22)式代入(17)式得

。由(18)式可得

### 2.2 结果分析

 图1驻留时间分布函数理论结果(实线)和数值模拟结果(D=0.04, A=0.15, ω=0.05, ε=0.3, τ=300)
 图2τ=300和τ=0的驻留时间分布函数(D=0.04, A=0.15, ω=0.05, ε=0)

## 3 较小A/D情形下的驻留时间分布函数

### 3.1 理论计算

τt+τ < 2τ时, 不妨设t1=t+τ, 则τt1 < 2τ。将t1=t+τ代入(5)式和(7)式可近似得到

### 3.2 结果分析

 图3随w变化的驻留时间分布函数的理论结果和数值模拟结果(D=0.07, A=0.06, ε=0.4, τ=200)

#### 3.2.1 噪声强度的影响

 图4随D变化的驻留时间分布函数的理论结果和数值模拟结果(A=0.06, ω=0.1, ε=0.5, τ=150)

#### 3.2.2 相关强度的影响

 图5随ε变化的驻留时间分布函数的理论结果和数值模拟结果(D=0.07, A=0.05, ω=0.15, τ=200)

## References

1. BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): L453. [Article] [NASA ADS] [CrossRef] [Google Scholar]
2. GOULDING D, MELNIK S, CURTIN D, et al. Kramers' law for a bistable system with time-delayed noise[J]. Physical Review E, 2007, 76(3): 031128. [Article] [CrossRef] [Google Scholar]
3. BORROMEO M, GIUSEPPONI S, MARCHESONI F. Recycled noise rectification: an automated Maxwell's daemon[J]. Physical Review E, 2006, 74(3): 031121. [Article] [CrossRef] [Google Scholar]
4. BORROMEO M, MARCHESONI F. Stochastic synchronization via noise recycling[J]. Physical Review E, 2007, 75(4): 041106. [Article] [CrossRef] [Google Scholar]
5. MA J, GAO Q Y. Control of stochastic spike motion in an excitable system via recycled noise[J]. Science China Chemistry, 2011, 54: 1504–1509. [Article] [CrossRef] [Google Scholar]
6. MA J, HOU Z H, XIN H W. Control coherence resonance by noise recycling[J]. The European Physical Journal B, 2009, 69: 101–107. [Article] [CrossRef] [Google Scholar]
7. CHÉAGÉ C A, YAMAPI R, WOAFO P. Bifurcations in a birhythmic biological system with time-delayed noise[J]. Nonlinear Dynamics, 2013, 73: 2157–2173. [Article] [CrossRef] [Google Scholar]
8. SUN Z K, YANG X L, XU W. Resonance dynamics evoked via noise recycling procedure[J]. Physical Review E, 2012, 85(6): 061125. [Article] [CrossRef] [Google Scholar]
9. SUN Z K, YANG X L, XIAO Y Z, et al. Modulating resonance behaviors by noise recycling in bistable systems with time delay[J]. Chaos, 2014, 24: 023126. [Article] [NASA ADS] [CrossRef] [Google Scholar]
10. COHEN A, SOLOMON A, DUFFY K R, et al. Noise recycling[C]//IEEE International Symposium on Information Theory, Los Angeles, CA, USA, 2020: 315–320 [Google Scholar]
11. RIAZ A, SOLOMON A, ERCAN F, et al. Interleaved noise recycling using GRAND[C]//IEEE International Conference on Communications, Seoul, 2022: 2483–2488 [Google Scholar]
12. XU P F, JIN Y F. Stochastic resonance in an asymmetric tristable system driven by correlated noises[J]. Applied Mathematical Modelling, 2020, 77: 408–425. [Article] [CrossRef] [Google Scholar]
13. WORMELL C L, GOTTWALD G A. On the validity of linear response theory in high-dimensional deterministic dynamical systems[J]. Journal of Statistical Physics, 2018, 172: 1479–1498. [Article] [NASA ADS] [CrossRef] [Google Scholar]
14. DAVIS D, TROIANO M, CHINNICI A, et al. Particle residence time distributions in a vortex-based solar particle receiver-reactor: an experimental, numerical and theoretical study[J]. Chemical Engineering Science, 2020, 214: 115421. [Article] [CrossRef] [Google Scholar]
15. GAMMAITONI L, MARCHESONI F, MENICHELLA-SAETTA E, et al. Stochastic resonance in bistable systems[J]. Physical Review Letters, 1989, 62(4): 349–352. [Article] [CrossRef] [Google Scholar]
16. ZHOU T, MOSS F, JUNG P. Escape-time distributions of a periodically modulated bistable system with noise[J]. Physical Review A, 1990, 42(6): 3161. [Article] [CrossRef] [Google Scholar]
17. MASOLLER C. Distribution of residence times of time-delayed bistable systems driven by noise[J]. Physical Review Letters, 2003, 90(2): 020601. [Article] [CrossRef] [Google Scholar]
18. CURTIN D, HEGARTY S P, GOULDING D, et al. Distribution of residence times in bistable noisy systems with time-delayed feedback[J]. Physical Review E, 2004, 70(3): 031103. [Article] [CrossRef] [Google Scholar]
19. SUN Z K, WU Y Z, DU L, et al. Residence-times distribution function of bistable system subjected to noise recycling[J]. Nonlinear Dynamics, 2016, 84: 1011–1019. [Article] [CrossRef] [Google Scholar]
20. WU Yazhen, SUN Zhongkui. Residence-times distribution function in asymmetric bistable system driven by noise recycling[J]. Acta Physica Sinica, 2020, 69(12): 2–11. [Article] (in Chinese) [Google Scholar]
21. CHUNG S Y, RICHARDSON T J, URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Trans on Information Theory, 2001, 47(2): 657–670. [Article] [Google Scholar]

## All Figures

 图1驻留时间分布函数理论结果(实线)和数值模拟结果(D=0.04, A=0.15, ω=0.05, ε=0.3, τ=300) In the text
 图2τ=300和τ=0的驻留时间分布函数(D=0.04, A=0.15, ω=0.05, ε=0) In the text
 图3随w变化的驻留时间分布函数的理论结果和数值模拟结果(D=0.07, A=0.06, ε=0.4, τ=200) In the text
 图4随D变化的驻留时间分布函数的理论结果和数值模拟结果(A=0.06, ω=0.1, ε=0.5, τ=150) In the text
 图5随ε变化的驻留时间分布函数的理论结果和数值模拟结果(D=0.07, A=0.05, ω=0.15, τ=200) In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.