Open Access
Issue
JNWPU
Volume 42, Number 1, February 2024
Page(s) 165 - 172
DOI https://doi.org/10.1051/jnwpu/20244210165
Published online 29 March 2024
  1. BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): L453. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  2. GOULDING D, MELNIK S, CURTIN D, et al. Kramers' law for a bistable system with time-delayed noise[J]. Physical Review E, 2007, 76(3): 031128. [Article] [CrossRef] [Google Scholar]
  3. BORROMEO M, GIUSEPPONI S, MARCHESONI F. Recycled noise rectification: an automated Maxwell's daemon[J]. Physical Review E, 2006, 74(3): 031121. [Article] [CrossRef] [Google Scholar]
  4. BORROMEO M, MARCHESONI F. Stochastic synchronization via noise recycling[J]. Physical Review E, 2007, 75(4): 041106. [Article] [CrossRef] [Google Scholar]
  5. MA J, GAO Q Y. Control of stochastic spike motion in an excitable system via recycled noise[J]. Science China Chemistry, 2011, 54: 1504–1509. [Article] [CrossRef] [Google Scholar]
  6. MA J, HOU Z H, XIN H W. Control coherence resonance by noise recycling[J]. The European Physical Journal B, 2009, 69: 101–107. [Article] [CrossRef] [Google Scholar]
  7. CHÉAGÉ C A, YAMAPI R, WOAFO P. Bifurcations in a birhythmic biological system with time-delayed noise[J]. Nonlinear Dynamics, 2013, 73: 2157–2173. [Article] [CrossRef] [Google Scholar]
  8. SUN Z K, YANG X L, XU W. Resonance dynamics evoked via noise recycling procedure[J]. Physical Review E, 2012, 85(6): 061125. [Article] [CrossRef] [Google Scholar]
  9. SUN Z K, YANG X L, XIAO Y Z, et al. Modulating resonance behaviors by noise recycling in bistable systems with time delay[J]. Chaos, 2014, 24: 023126. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  10. COHEN A, SOLOMON A, DUFFY K R, et al. Noise recycling[C]//IEEE International Symposium on Information Theory, Los Angeles, CA, USA, 2020: 315–320 [Google Scholar]
  11. RIAZ A, SOLOMON A, ERCAN F, et al. Interleaved noise recycling using GRAND[C]//IEEE International Conference on Communications, Seoul, 2022: 2483–2488 [Google Scholar]
  12. XU P F, JIN Y F. Stochastic resonance in an asymmetric tristable system driven by correlated noises[J]. Applied Mathematical Modelling, 2020, 77: 408–425. [Article] [CrossRef] [Google Scholar]
  13. WORMELL C L, GOTTWALD G A. On the validity of linear response theory in high-dimensional deterministic dynamical systems[J]. Journal of Statistical Physics, 2018, 172: 1479–1498. [Article] [NASA ADS] [CrossRef] [Google Scholar]
  14. DAVIS D, TROIANO M, CHINNICI A, et al. Particle residence time distributions in a vortex-based solar particle receiver-reactor: an experimental, numerical and theoretical study[J]. Chemical Engineering Science, 2020, 214: 115421. [Article] [CrossRef] [Google Scholar]
  15. GAMMAITONI L, MARCHESONI F, MENICHELLA-SAETTA E, et al. Stochastic resonance in bistable systems[J]. Physical Review Letters, 1989, 62(4): 349–352. [Article] [CrossRef] [Google Scholar]
  16. ZHOU T, MOSS F, JUNG P. Escape-time distributions of a periodically modulated bistable system with noise[J]. Physical Review A, 1990, 42(6): 3161. [Article] [CrossRef] [Google Scholar]
  17. MASOLLER C. Distribution of residence times of time-delayed bistable systems driven by noise[J]. Physical Review Letters, 2003, 90(2): 020601. [Article] [CrossRef] [Google Scholar]
  18. CURTIN D, HEGARTY S P, GOULDING D, et al. Distribution of residence times in bistable noisy systems with time-delayed feedback[J]. Physical Review E, 2004, 70(3): 031103. [Article] [CrossRef] [Google Scholar]
  19. SUN Z K, WU Y Z, DU L, et al. Residence-times distribution function of bistable system subjected to noise recycling[J]. Nonlinear Dynamics, 2016, 84: 1011–1019. [Article] [CrossRef] [Google Scholar]
  20. WU Yazhen, SUN Zhongkui. Residence-times distribution function in asymmetric bistable system driven by noise recycling[J]. Acta Physica Sinica, 2020, 69(12): 2–11. [Article] (in Chinese) [Google Scholar]
  21. CHUNG S Y, RICHARDSON T J, URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Trans on Information Theory, 2001, 47(2): 657–670. [Article] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.