Open Access
Issue
JNWPU
Volume 36, Number 1, February 2018
Page(s) 57 - 65
DOI https://doi.org/10.1051/jnwpu/20183610057
Published online 18 May 2018
  1. Gong Yiming, Zhang Weiwei, Liu Yilang. Reaserching How Initial Value if Internal Iteration Impacts on Computational Efficieny in Unsteady Flow Solving[J]. Journal of Northwestern Polytechnical University, 2016, 34(1):11-17 (in Chinese)[Article] [Google Scholar]
  2. Geuzaine P. Newton-Krylov Strategy for Compressible Turbulent Flows on Unstructured Meshes[J]. AIAA Journal, 2001, 39(3) : 528-531 10.2514/2.1339 [NASA ADS] [CrossRef] [Google Scholar]
  3. Dennis J, SchnabelR. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Society for Industrial and Applied Mathematics, 1996 [CrossRef] [Google Scholar]
  4. Brown D A, Zingg D W. Advances in Homotopy Continuation Methods in Computational Fluid Dynamics[R]. AIAA-2013-2944 [Google Scholar]
  5. Lyra P R M, Morgan K. A Review and Comparative Study of Upwind Biased Schemes for Compressible Flow Computation. PartⅢ:Multidimensional Extension on Unstructured Grids[J]. Archives of Computational Methods in Engineering, 2002, 9(3):207-256 10.1007/BF02818932 [CrossRef] [Google Scholar]
  6. Kelley C T, Liao L Z, Qi L, et al. Projected Pseudotransient Continuation[J]. SIAM Journal on Numerical Analysis, 2008, 46(6) : 3071-3083 10.1137/07069866X [CrossRef] [Google Scholar]
  7. Young D P, Melvin R G, Bieterman M B, et al. Global Convergence of Inexact Newton Methods for Transonic Flow[J]. International Journal for Numerical Methods in Fluids, 1990, 11(8):1075-1095 10.1002/(ISSN)1097-0363 [NASA ADS] [CrossRef] [Google Scholar]
  8. Hicken J, Buckley H, Osusky M, et al. Dissipation-Based Continuation: a Globalization for Inexact-Newton Solvers[R]. AIAA-2011-3237 [Google Scholar]
  9. Pollock S. A Regularized Newton-Like Method for Nonlinear PDE[J]. Numerical Functional Analysis and Optimization, 2015, 36(11):1493-1511 10.1080/01630563.2015.1069328 [CrossRef] [Google Scholar]
  10. Persson P O, Peraire J. Sub-Cell Shock Capturing for Discontinuous Galerkin Methods[R]. AIAA-2006-0112 [Google Scholar]
  11. Kuzmin D, Moller M, Gurris M. Flux-Corrected Transport:Principles, Algorithms, and Applications[M]. 2nd Ed. Springer, 2012: 193-238 [Google Scholar]
  12. Balay S, Abhyankar S, Adams M F, et al. PETSc Users Manual[R]. ANL-95/11-Revision 3. 6, 2015 [Google Scholar]
  13. Amestoy P R, Duff I S, L'Excellent J-Y, et al. A Fully Asynchronous Multi-Frontal Solver Using Distributed Dynamic Scheduling. SIAM Journal on Matrix Analysis and Applications, 2001, 23(1):15-41 10.1137/S0895479899358194 [CrossRef] [MathSciNet] [Google Scholar]
  14. Bangerth W, Hartmann R, Kanschat G. DealⅡ——a General Purpose Object Oriented Finite Element Library[J]. ACM Trans on Mathematical Software, 2007, 33(4) : 1-27[Article] [CrossRef] [Google Scholar]
  15. Delchini M O, Ragusa J C, Berry R A. Entropy-Based Viscous Regularization for the Multi-Dimensional Euler Equations in Low-Mach and Transonic Flows[J]. Computers & Fluids, 2015, 118 : 225-244[Article] [CrossRef] [Google Scholar]
  16. Žaloudek M, FoǐJ, Fürst J. Numerical Solution of Compressible Flow in a Channel and Blade Cascade[J]. Flow, Turbulence and Combustion, 2006, 76(4) : 353-361 10.1007/s10494-006-9023-9 [CrossRef] [Google Scholar]
  17. Janda M, Kozel K, Liska R. Hyperbolic Problem: Theory, Numnerics, Applications[C]//8th International Conference on Magdeburg, 2001: 563-572 [Article] [Google Scholar]
  18. Vassberg J, Jameson A. In Pursuit of Grid Convergence, Part Ⅰ: Two Dimensional Euler Solutions[R]. AIAA-2009-4114 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.